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• Recall trop(V (I)) ⊆ Rn for I ⊆ K[Tn].
• Have seen: trop(V (I)) it is a finite intersection of tropical hypersurfaces

(existence of finite tropical bases).
• Also: trop(V (I)) ⊆ v(V (I)).
• Example. I = 〈x+y+ 1, x+ 2y〉 over C{{t}} gives trop(V (I)) = {(0, 0)} 6=

trop(V (x+ y+ 1), x+ 2y). A finite intersection of tropical hypersurfaces is
called a tropical pre-variety.
• Theorem (fundamental theorem of tropical geometry): LetK be algebraically

closed with a nontrivial valuation, I ⊆ K[Tn] and X = V (I) ⊆ Kn. Then
the following are equal:
(1) trop(V (I))
(2) {w ∈ Rn | inwI 6= 〈1〉}, and
(3) the topological closure of v(V (I)).

[The first two are clearly equal: if inwI is not 〈1〉, then inwf is not a
monomial for any f ∈ I, and hence w ∈ trop(V (f)) for each f ∈ I, i.e.,
w ∈ trop(V (I)). For the converse we note that if inwI contains a monomial,
then there is an f ∈ I with inwf monomial.

The third is included in the earlier two by the remarks above. For the
opposite inclusion we will have to work.]

• Proposition: LetK be a field with a (possibly trivial) valuation, and let L be
a valued field extension. Let I ⊆ K[Tn] and consider I ′ := L⊗K I ⊆ L[Tn].
Then trop(V (I)) = trop(V (I ′)).

[⊇ is clear since the set on the left is an intersection over a larger domain.
For the converse, suppose that inwI

′ contains a monomial. This means that
there are f1, . . . , fs ∈ I and coefficients c1, . . . , cs ∈ L such that

inw
∑
i

cifi = xα

This can be read as saying that a system of K-linear equations for the ci
has an approximate solution over L. The following lemma, applied to
(1) the coefficient matrix f1, . . . , fs, r equal to the number of monomials

appearing in at least one fi;
(2) uα := −w · α for such a monomial xα; and
(3) b = (1, 0, . . . , 0)T where the 1 is on the position corresponding to the

monomial x0;
shows that it then also has an approximate solution over K, i.e., inwI 3 xα.]

• Lemma: let A ∈ Kr×s, u ∈ Rr, and b ∈ Kr. Suppose that there exists a
row vector z ∈ Ls such that v((Az − b)i) > ui for all i. Then a z with this
property exists in Ks.
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[We have already see a version of this argument, but let’s give a slightly
different version. As the statement only concerns the range of A, we may
assume that A : Ks → Kr is injective. In particular, we have r ≥ s, and we
prove the lemma by induction on r. For r = s the matrix A is invertible,
so even an exact solution to Az = b exists over K. Now suppose that the
statement is true for r − 1, which is at least s. Denote the rows of A by
a1, . . . , ar ∈ (Ks)∗. As r > s, there exists a linear relation

∑
i λiai = 0

where not all λi are 0. The existence of z in the lemma yields

v

(∑
i

λibi

)
= v

(∑
i

λi(bi − aiz) +
∑
i

λiaiz

)

= v

(∑
i

λi(bi − aiz) + 0

)
(1)

> min
i

(v(λi) + ui).

After rearranging the rows of A we may assume that the latter minimum
is attained in i = r, and by multiplying all λi with 1/λr we may assume
that λr = 1. By the induction hypothesis, there exists a z ∈ Ks such that
v(aiz − bi) > ui for all i = 1, . . . , r − 1. For this same z we have

v(arz − br) = v

(
−
r−1∑
i=1

λiaiz − br

)

= v

(
−
r−1∑
i=1

λi(aiz − bi)−
r∑
i=1

λibi

)

≥ min

{
v

(
r−1∑
i=1

λi(aiz − bi)

)
, v

(
r∑
i=1

λibi

)}
> min
i=1,...,r

(v(λi) + ui),

where the last inequality follows from (1) and the assumption on z. By
assumption, the last minimum is attained in i = r, and equal to v(1)+ur =
ur.]

• The proposition allows us to work over suitable valued field extensions of
K, such as K((R)). In particular, in the proof of the fundamental theorem,
we may use that v : K → R is surjective and has a section, in addition to K
being algebraically closed. Thus our work from Chapter 2 becomes useful.

• In fact, trop(V (I)) is a finite union of v(K∗)-rational polyhedra, and since
v(K∗) is divisible and non-zero (as K is algebraically closed and v non-
trivial), the set of v(K∗)-rational points in trop(V (I)) is dense. So for the
last inclusion in the theorem it suffices to prove that if w ∈ Trop(V (I)) ∩
(v(K∗))n, then there is an x ∈ V (I) with v(x) = w.

• The proof of the fundamental theorem will go via projections to the hyper-
surface case.

• Proposition: Fix a subvariety X ⊆ Tn and m ≥ dim(X). Then there exists
a homomorphism ψ : Tn → Tm such that ψ(X) is Zariski-closed in Tm

and has dimension equal to dim(X). Moreover, ψ can be chosen such that
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ker trop(ψ) intersects a given finite collection of m-dimensional subspaces
in Rn trivially.

[It suffices to prove the case where m = n − 1. Fix l � 0. Consider

first the automorphism φ : Tn → Tn defined dually by φ∗xi = xix
li

n for
i = 1, . . . , n− 1 and φ∗xn = xn.

This maps a fixed monomial xα to xα1
1 · · ·x

αn−1

n−1 x
αn+

∑l
i=1 αil

i

n . Thus, if
we have a finite set S of monomials xα with α ∈ Zn≥0 and we take l larger

than any αi for any xα ∈ S, then the exponents of xn in φm, φm′ are
distinct for m,m′ ∈ S distinct.

Apply this reasoning to the monomials appearing in a finite generating
set inK[x1, . . . , xn] of the ideal I = ITn(X), which is not the zero ideal since
dimX < n. This gives that, for l� 0, φ∗(I) is generated by a nonempty set
of polynomials in K[x1, . . . , xn] whose coefficients, when regarded as poly-
nomials in xn, are a constant times a monomial in x1, . . . , xn−1. Replace I
by this φ∗(I).

We claim that we may now take for ψ : Tn → Tn−1 the projection on
the first n − 1 coordinates. The ideal of Y := φ(X) is then I ∩K[Tn−1],
and K[X] is integral over K[Y ] since any one of the generators of I gives
a monic equation for xn over K[Y ] (the coefficient of the highest power of
xn is a monomial and hence invertible in K[Tn]). This shows that the map
X → Y is closed and dimY = dimX.

Composing this projection with the φ above yields the map ψ whose
tropicalisation is (x1, . . . , xn) 7→ (x1 + l1xn, . . . , xn−1 + ln−1xn) with kernel
spanned by (l1, l2, . . . , ln−1,−1). For this kernel to intersect a given hyper-
plane with equation

∑
i aixi = 0 trivially, we need to choose l not a root of

the polynomial equation
∑n−1
i=1 ait

i = an. Again, this can be arranged by
taking l sufficiently large.]
• By virtue of Chapter 2, the set {w ∈ Rn | inwI 6= 〈1〉} is the support of

a subcomplex of the Gröbner complex of Iproj via the identification Rn →
Rn+1/R1, w 7→ (0, w).

• Proposition: the cells CIproj [w] contained in this subcomplex have dimen-
sion at most the Krull dimension of V (I).

[Let P be that cell, with w in its relative interior. Its affine span is w+L
with L ⊆ Rn a vector space defined over Q. After a torus automorphism,
we may assume that L = 〈e1, . . . , ek〉. For u ∈ L ∩ Zk we have inuinwI =
inw+εuI = inwI for ε > 0 sufficiently small.

Taking u = ei for i = 1, . . . , k, this means that inwI is homogeneous
with respect to the grading in which variable xi has degree 1 and all other
variables have degree 0. In other words, it is homogeneous w.r.t. the
corresponding Zk-grading.

Hence inwI is generated by polynomials f1, . . . , fs that each are of the
form some mjgj where mj is a monomial and gj does not involve x1, . . . , xk.
Since mj are units, these may be taken 1. This means that, for each point
in V (inwI), also all other points with the same last n − k coordinates are
in this variety. Hence, since inwI 6= 〈1〉 implies that V (inwI) is nonempty,
the Krull dimension of k[Tn]/inwI is at least k, and the same holds for
k[An]/inwIaff . As we have seen, this is the image of k[Pn]/in(0,w)Iproj under
the map sending x0 to 1. The Krull dimension of the latter ring equals
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that of K[Pn]/Iproj, which is the dimension of V (I) plus 1. The map
x0 7→ 1 corresponds to intersecting with a hyperplane, and lowers the Krull
dimensional by at least 1. (More precisely: it lowers the dimension of the
components of V (in(0,w)Iproj) that intersect Ank in a nonempty set by 1,
and removes the components that do not intersect Ank .) Hence we find
that, indeed, the Krull dimension of V (I) is at least k.]
• To prove the fundamental theorem, we still need to prove that inwI 6= 〈1〉

implies the existence of a point x ∈ V (I) with v(x) = w. There is an easy
reduction to the case where I is prime.
• So, now assume that I is prime, and let d = dimX. We do induction

on n− d. For n− d = 1 the fundamental theorem is Kapranov’s theorem.
Suppose that n−d > 1 and that the theorem holds for smaller codimension.
• The set Trop(V (I)) is the support of a polyhedral complex of dimension
≤ d. For each cell P , let PL be the linear span of P − w, a vector space of
dimension ≤ d+ 1 < n. By the work earlier this morning, there is a torus
homomorphism ψ : Tn → Tn−1 that has the following properties:
(1) Y := ψ(X) is closed and of dimension d.
(2) ker trop(ψ) intersects each space PL trivially.

• Now trop(ψ) maps trop(X) into trop(Y ), so, by the induction hypothesis
applied to Y , there is a point y ∈ Y with v(y) = trop(ψ)(w).
• There is a point x ∈ X with ψ(x) = y. This means that trop(ψ)v(x) =
v(y) = trop(ψ)(w). This means that w− v(x) ∈ ker trop(ψ), and since this
lies in LP where P is such that v(x) ∈ P , our second property of ψ implies
that v(x) = w.


