TROPICAL GEOMETRY, LECTURE 9

JAN DRAISMA

- Recall $\operatorname{trop}(V(I)) \subseteq \mathbb{R}^n$ for $I \subseteq K[T^n]$.
- Have seen: trop(V(I)) it is a finite intersection of tropical hypersurfaces (existence of finite tropical bases).
- Also: $\operatorname{trop}(V(I)) \subseteq v(V(I))$.
- Example. $I = \langle x+y+1, x+2y \rangle$ over $\mathbb{C}\{\{t\}\}$ gives $\operatorname{trop}(V(I)) = \{(0,0)\} \neq \operatorname{trop}(V(x+y+1), x+2y)$. A finite intersection of tropical hypersurfaces is called a *tropical pre-variety*.
- Theorem (fundamental theorem of tropical geometry): Let K be algebraically closed with a nontrivial valuation, $I \subseteq K[T^n]$ and $X = V(I) \subseteq K^n$. Then the following are equal:
 - (1) $\operatorname{trop}(V(I))$
 - (2) $\{w \in \mathbb{R}^n \mid \text{in}_w I \neq \langle 1 \rangle \}$, and
 - (3) the topological closure of v(V(I)).

[The first two are clearly equal: if $\operatorname{in}_w I$ is not $\langle 1 \rangle$, then $\operatorname{in}_w f$ is not a monomial for any $f \in I$, and hence $w \in \operatorname{trop}(V(f))$ for each $f \in I$, i.e., $w \in \operatorname{trop}(V(I))$. For the converse we note that if $\operatorname{in}_w I$ contains a monomial, then there is an $f \in I$ with $\operatorname{in}_w f$ monomial.

The third is included in the earlier two by the remarks above. For the opposite inclusion we will have to work.]

- Proposition: Let K be a field with a (possibly trivial) valuation, and let L be a valued field extension. Let $I \subseteq K[T^n]$ and consider $I' := L \otimes_K I \subseteq L[T^n]$. Then $\operatorname{trop}(V(I)) = \operatorname{trop}(V(I'))$.
 - \supseteq is clear since the set on the left is an intersection over a larger domain. For the converse, suppose that $\operatorname{in}_w I'$ contains a monomial. This means that there are $f_1, \ldots, f_s \in I$ and coefficients $c_1, \ldots, c_s \in L$ such that

$$\operatorname{in}_w \sum_i c_i f_i = x^{\alpha}$$

This can be read as saying that a system of K-linear equations for the c_i has an approximate solution over L. The following lemma, applied to

- (1) the coefficient matrix f_1, \ldots, f_s , r equal to the number of monomials appearing in at least one f_i ;
- (2) $u_{\alpha} := -w \cdot \alpha$ for such a monomial x^{α} ; and
- (3) $b = (1, 0, ..., 0)^T$ where the 1 is on the position corresponding to the monomial x^0 ;

shows that it then also has an approximate solution over K, i.e., $\operatorname{in}_w I \ni x^{\alpha}$.

• Lemma: let $A \in K^{r \times s}$, $u \in \mathbb{R}^r$, and $b \in K^r$. Suppose that there exists a row vector $z \in L^s$ such that $v((Az - b)_i) > u_i$ for all i. Then a z with this property exists in K^s .

[We have already see a version of this argument, but let's give a slightly different version. As the statement only concerns the range of A, we may assume that $A: K^s \to K^r$ is injective. In particular, we have $r \geq s$, and we prove the lemma by induction on r. For r=s the matrix A is invertible, so even an exact solution to Az=b exists over K. Now suppose that the statement is true for r-1, which is at least s. Denote the rows of A by $a_1, \ldots, a_r \in (K^s)^*$. As r > s, there exists a linear relation $\sum_i \lambda_i a_i = 0$ where not all λ_i are 0. The existence of z in the lemma yields

$$v\left(\sum_{i} \lambda_{i} b_{i}\right) = v\left(\sum_{i} \lambda_{i} (b_{i} - a_{i}z) + \sum_{i} \lambda_{i} a_{i}z\right)$$

$$= v\left(\sum_{i} \lambda_{i} (b_{i} - a_{i}z) + 0\right)$$

$$> \min_{i} (v(\lambda_{i}) + u_{i}).$$

After rearranging the rows of A we may assume that the latter minimum is attained in i = r, and by multiplying all λ_i with $1/\lambda_r$ we may assume that $\lambda_r = 1$. By the induction hypothesis, there exists a $z \in K^s$ such that $v(a_i z - b_i) > u_i$ for all $i = 1, \ldots, r - 1$. For this same z we have

$$v(a_r z - b_r) = v\left(-\sum_{i=1}^{r-1} \lambda_i a_i z - b_r\right)$$

$$= v\left(-\sum_{i=1}^{r-1} \lambda_i (a_i z - b_i) - \sum_{i=1}^{r} \lambda_i b_i\right)$$

$$\geq \min\left\{v\left(\sum_{i=1}^{r-1} \lambda_i (a_i z - b_i)\right), v\left(\sum_{i=1}^{r} \lambda_i b_i\right)\right\}$$

$$> \min_{i=1}^{r} (v(\lambda_i) + u_i),$$

where the last inequality follows from (1) and the assumption on z. By assumption, the last minimum is attained in i = r, and equal to $v(1) + u_r = u_r$.]

- The proposition allows us to work over suitable valued field extensions of K, such as $K((\mathbb{R}))$. In particular, in the proof of the fundamental theorem, we may use that $v: K \to \mathbb{R}$ is surjective and has a section, in addition to K being algebraically closed. Thus our work from Chapter 2 becomes useful.
- In fact, $\operatorname{trop}(V(I))$ is a finite union of $v(K^*)$ -rational polyhedra, and since $v(K^*)$ is divisible and non-zero (as K is algebraically closed and v non-trivial), the set of $v(K^*)$ -rational points in $\operatorname{trop}(V(I))$ is dense. So for the last inclusion in the theorem it suffices to prove that if $w \in \operatorname{Trop}(V(I)) \cap (v(K^*))^n$, then there is an $x \in V(I)$ with v(x) = w.
- The proof of the fundamental theorem will go via projections to the hypersurface case.
- Proposition: Fix a subvariety $X \subseteq T^n$ and $m \ge \dim(X)$. Then there exists a homomorphism $\psi: T^n \to T^m$ such that $\psi(X)$ is Zariski-closed in T^m and has dimension equal to $\dim(X)$. Moreover, ψ can be chosen such that

ker trop (ψ) intersects a given finite collection of m-dimensional subspaces in \mathbb{R}^n trivially.

[It suffices to prove the case where m=n-1. Fix $l\gg 0$. Consider first the automorphism $\phi:T^n\to T^n$ defined dually by $\phi^*x_i=x_ix_n^{l^i}$ for $i=1,\ldots,n-1$ and $\phi^*x_n=x_n$.

This maps a fixed monomial x^{α} to $x_1^{\alpha_1} \cdots x_{n-1}^{\alpha_{n-1}} x_n^{\alpha_n + \sum_{i=1}^l \alpha_i l^i}$. Thus, if we have a finite set S of monomials x^{α} with $\alpha \in \mathbb{Z}_{\geq 0}^n$ and we take l larger than any α_i for any $x^{\alpha} \in S$, then the exponents of x_n in $\phi m, \phi m'$ are distinct for $m, m' \in S$ distinct.

Apply this reasoning to the monomials appearing in a finite generating set in $K[x_1, \ldots, x_n]$ of the ideal $I = I_{T^n}(X)$, which is not the zero ideal since $\dim X < n$. This gives that, for $l \gg 0$, $\phi^*(I)$ is generated by a nonempty set of polynomials in $K[x_1, \ldots, x_n]$ whose coefficients, when regarded as polynomials in x_n , are a constant times a monomial in x_1, \ldots, x_{n-1} . Replace I by this $\phi^*(I)$.

We claim that we may now take for $\psi: T^n \to T^{n-1}$ the projection on the first n-1 coordinates. The ideal of $Y:=\overline{\phi(X)}$ is then $I\cap K[T^{n-1}]$, and K[X] is integral over K[Y] since any one of the generators of I gives a monic equation for x_n over K[Y] (the coefficient of the highest power of x_n is a monomial and hence invertible in $K[T^n]$). This shows that the map $X \to Y$ is closed and dim $Y = \dim X$.

Composing this projection with the ϕ above yields the map ψ whose tropicalisation is $(x_1,\ldots,x_n)\mapsto (x_1+l^1x_n,\ldots,x_{n-1}+l^{n-1}x_n)$ with kernel spanned by $(l^1,l^2,\ldots,l^{n-1},-1)$. For this kernel to intersect a given hyperplane with equation $\sum_i a_i x_i = 0$ trivially, we need to choose l not a root of the polynomial equation $\sum_{i=1}^{n-1} a_i t^i = a_n$. Again, this can be arranged by taking l sufficiently large.]

- By virtue of Chapter 2, the set $\{w \in \mathbb{R}^n \mid \text{in}_w I \neq \langle 1 \rangle\}$ is the support of a subcomplex of the Gröbner complex of I_{proj} via the identification $\mathbb{R}^n \to \mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}, \ w \mapsto (0, w)$.
- Proposition: the cells $\overline{C_{I_{\text{proj}}}[w]}$ contained in this subcomplex have dimension at most the Krull dimension of V(I).

[Let P be that cell, with w in its relative interior. Its affine span is w+L with $L \subseteq \mathbb{R}^n$ a vector space defined over \mathbb{Q} . After a torus automorphism, we may assume that $L = \langle e_1, \dots, e_k \rangle$. For $u \in L \cap \mathbb{Z}^k$ we have $\operatorname{in}_u \operatorname{in}_w I = \operatorname{in}_{w+\epsilon u} I = \operatorname{in}_w I$ for $\epsilon > 0$ sufficiently small.

Taking $u = e_i$ for i = 1, ..., k, this means that $\text{in}_w I$ is homogeneous with respect to the grading in which variable x_i has degree 1 and all other variables have degree 0. In other words, it is homogeneous w.r.t. the corresponding \mathbb{Z}^k -grading.

Hence $\operatorname{in}_w I$ is generated by polynomials f_1,\ldots,f_s that each are of the form some m_jg_j where m_j is a monomial and g_j does not involve x_1,\ldots,x_k . Since m_j are units, these may be taken 1. This means that, for each point in $V(\operatorname{in}_w I)$, also all other points with the same last n-k coordinates are in this variety. Hence, since $\operatorname{in}_w I \neq \langle 1 \rangle$ implies that $V(\operatorname{in}_w I)$ is nonempty, the Krull dimension of $k[T^n]/\operatorname{in}_w I$ is at least k, and the same holds for $k[\mathbb{A}^n]/\operatorname{in}_w I_{\operatorname{aff}}$. As we have seen, this is the image of $k[\mathbb{P}^n]/\operatorname{in}_{(0,w)} I_{\operatorname{proj}}$ under the map sending x_0 to 1. The Krull dimension of the latter ring equals

- that of $K[\mathbb{P}^n]/I_{\text{proj}}$, which is the dimension of V(I) plus 1. The map $x_0 \mapsto 1$ corresponds to intersecting with a hyperplane, and lowers the Krull dimensional by at least 1. (More precisely: it lowers the dimension of the components of $V(\text{in}_{(0,w)}I_{\text{proj}})$ that intersect \mathbb{A}^n_k in a nonempty set by 1, and removes the components that do not intersect \mathbb{A}^n_k .) Hence we find that, indeed, the Krull dimension of V(I) is at least k.]
- To prove the fundamental theorem, we still need to prove that $\operatorname{in}_w I \neq \langle 1 \rangle$ implies the existence of a point $x \in V(I)$ with v(x) = w. There is an easy reduction to the case where I is prime.
- So, now assume that I is prime, and let $d = \dim X$. We do induction on n d. For n d = 1 the fundamental theorem is Kapranov's theorem. Suppose that n d > 1 and that the theorem holds for smaller codimension.
- The set $\operatorname{Trop}(V(I))$ is the support of a polyhedral complex of dimension $\leq d$. For each cell P, let P_L be the linear span of P-w, a vector space of dimension $\leq d+1 < n$. By the work earlier this morning, there is a torus homomorphism $\psi: T^n \to T^{n-1}$ that has the following properties:
 - (1) $Y := \psi(X)$ is closed and of dimension d.
 - (2) ker trop(ψ) intersects each space P_L trivially.
- Now $\operatorname{trop}(\psi)$ maps $\operatorname{trop}(X)$ into $\operatorname{trop}(Y)$, so, by the induction hypothesis applied to Y, there is a point $y \in Y$ with $v(y) = \operatorname{trop}(\psi)(w)$.
- There is a point $x \in X$ with $\psi(x) = y$. This means that $\operatorname{trop}(\psi)v(x) = v(y) = \operatorname{trop}(\psi)(w)$. This means that $w v(x) \in \ker \operatorname{trop}(\psi)$, and since this lies in L_P where P is such that $v(x) \in P$, our second property of ψ implies that v(x) = w.