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JAN DRAISMA

Recall trop(V/(I)) C R" for I C K[T™].

Have seen: trop(V(I)) it is a finite intersection of tropical hypersurfaces
(existence of finite tropical bases).

Also: trop(V(I)) Cv(V(I)).

Example. T = (x+y+ 1,2+ 2y) over C{{t}} gives trop(V(I)) = {(0,0)} #
trop(V(x+y+1),z 4 2y). A finite intersection of tropical hypersurfaces is
called a tropical pre-variety.

Theorem (fundamental theorem of tropical geometry): Let K be algebraically
closed with a nontrivial valuation, I C K[T"] and X = V(I) C K™. Then
the following are equal:

(1) trop(V(1))

(2) {w € R™ | in,I # (1)}, and

(3) the topological closure of v(V (I)).

[The first two are clearly equal: if in, [ is not (1), then in, f is not a
monomial for any f € I, and hence w € trop(V (f)) for each f € I, i.e.,
w € trop(V(I)). For the converse we note that if in,,I contains a monomial,
then there is an f € I with in,, f monomial.

The third is included in the earlier two by the remarks above. For the
opposite inclusion we will have to work.]

Proposition: Let K be a field with a (possibly trivial) valuation, and let L be
a valued field extension. Let I C K[T™] and consider I' := L&y I C L[T"].
Then trop(V(I)) = trop(V(I")).

[D is clear since the set on the left is an intersection over a larger domain.
For the converse, suppose that in,,I’ contains a monomial. This means that
there are f1,..., fs € I and coefficients ¢y, ...,cs € L such that

iny, § cifi = x®
7

This can be read as saying that a system of K-linear equations for the ¢;

has an approximate solution over L. The following lemma, applied to

(1) the coefficient matrix fq,..., fs, r equal to the number of monomials
appearing in at least one f;;

2) Uy := —w - « for such a monomial z%; and

3) b=(1,0,...,0)T where the 1 is on the position corresponding to the
monomial z°;

shows that it then also has an approximate solution over K, i.e., in,I 3 2.

Lemma: let A € K"™°, v € R", and b € K”. Suppose that there exists a

row vector z € L® such that v((Az —b);) > u; for all i. Then a z with this

property exists in K°.

(
(
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[We have already see a version of this argument, but let’s give a slightly
different version. As the statement only concerns the range of A, we may
assume that A : K* — K7 is injective. In particular, we have r > s, and we
prove the lemma by induction on r. For r = s the matrix A is invertible,
so even an exact solution to Az = b exists over K. Now suppose that the
statement is true for r — 1, which is at least s. Denote the rows of A by
ai,...,a, € (K*)*. As r > s, there exists a linear relation ), Aja; = 0
where not all A\; are 0. The existence of z in the lemma yields

v (Z /\sz> =V <Z )\z(bl - Clz'Z) + Z )\ia1'2>
= (Z )\Z(bz — aiz) + 0)

> miin(v()\i) + ;).

After rearranging the rows of A we may assume that the latter minimum
is attained in ¢ = r, and by multiplying all \; with 1/\, we may assume
that A, = 1. By the induction hypothesis, there exists a z € K® such that
v(a;z —b;) > u; for all i = 1,...,r — 1. For this same z we have

r—1
v(arz —b.) = <— Z i@z — br>
i=1
r—1 r
=7 <— Z )\1(0412’ — bl) — Z )\zbz>
i=1 =1

Z min {1} <7z_: /\i(aiz — bl)> , U (zr: /\1b1> }

> min (’U()\l) + U,i),
i=1,...,r

where the last inequality follows from and the assumption on z. By
assumption, the last minimum is attained in ¢ = r, and equal to v(1) +u, =
U]
The proposition allows us to work over suitable valued field extensions of
K, such as K((R)). In particular, in the proof of the fundamental theorem,
we may use that v : K — R is surjective and has a section, in addition to K
being algebraically closed. Thus our work from Chapter 2 becomes useful.
In fact, trop(V (1)) is a finite union of v(K*)-rational polyhedra, and since
v(K*) is divisible and non-zero (as K is algebraically closed and v non-
trivial), the set of v(K™*)-rational points in trop(V (1)) is dense. So for the
last inclusion in the theorem it suffices to prove that if w € Trop(V (1)) N
(v(K™*))™, then there is an « € V(I) with v(z) = w.
The proof of the fundamental theorem will go via projections to the hyper-
surface case.
Proposition: Fix a subvariety X C 7™ and m > dim(X). Then there exists
a homomorphism ¢ : T™ — T™ such that ¢(X) is Zariski-closed in T™
and has dimension equal to dim(X). Moreover, ¥ can be chosen such that
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ker trop(%)) intersects a given finite collection of m-dimensional subspaces
in R™ trivially.

[It suffices to prove the case where m = n — 1. Fix [ > 0. Consider
first the automorphism ¢ : T™ — T™ defined dually by ¢*z; = x;2%, for
i=1,...,n—1and ¢*x,, = x,. _

This maps a fixed monomial 2* to z{* ---x%i’fx%’ﬁzi:l ol Thus, if
we have a finite set .S of monomials 2 with o € Z%, and we take [ larger
than any «a; for any ® € S, then the exponents of z, in ¢m,¢m’ are
distinct for m,m’ € S distinct.

Apply this reasoning to the monomials appearing in a finite generating
set in K[x1,...,x,] of the ideal I = I'p» (X), which is not the zero ideal since
dim X < n. This gives that, for I > 0, ¢*(I) is generated by a nonempty set
of polynomials in K[z1,...,z,] whose coefficients, when regarded as poly-
nomials in z,,, are a constant times a monomial in x1,...,x,_1. Replace I
by this ¢*(I).

We claim that we may now take for ¢ : T® — T™~! the projection on
the first n — 1 coordinates. The ideal of Y := ¢(X) is then I N K[T"™1],
and K[X] is integral over K[Y] since any one of the generators of I gives
a monic equation for x,, over K[Y] (the coefficient of the highest power of
Zp 18 a monomial and hence invertible in K[T™]). This shows that the map
X — Y is closed and dimY = dim X.

Composing this projection with the ¢ above yields the map ¢ whose
tropicalisation is (w1, ..., 2,) = (v1 + 1 2p, ..., 2h_1 +1" " 12,) with kernel
spanned by (I*,12,...,1"~1 —1). For this kernel to intersect a given hyper-
plane with equation ), a;x; = 0 trivially, we need to choose [ not a root of

the polynomial equation Z?:_ll a;t* = a,. Again, this can be arranged by
taking [ sufficiently large.]
By virtue of Chapter 2, the set {w € R™ | in,I # (1)} is the support of
a subcomplex of the Grobner complex of Ip; via the identification R"® —
R /R, w — (0, w).
Proposition: the cells Cy . ;[w] contained in this subcomplex have dimen-
sion at most the Krull dimension of V' (I).

[Let P be that cell, with w in its relative interior. Its affine span is w+ L
with L C R™ a vector space defined over Q. After a torus automorphism,

we may assume that L = (ey,...,ex). For u € L NZ* we have in,in,I =
iny eyl = ing I for € > 0 sufficiently small.
Taking u = e; for i« = 1,...,k, this means that in, I is homogeneous

with respect to the grading in which variable x; has degree 1 and all other
variables have degree 0. In other words, it is homogeneous w.r.t. the
corresponding ZF-grading.

Hence in,, I is generated by polynomials f1,..., fs that each are of the
form some m;g; where m; is a monomial and g; does not involve z1, ..., zy.
Since m; are units, these may be taken 1. This means that, for each point
in V(in,[I), also all other points with the same last n — k coordinates are
in this variety. Hence, since in,,I # (1) implies that V (in, ) is nonempty,
the Krull dimension of k[T™]/in, [ is at least k, and the same holds for
E[A"]/iny L. As we have seen, this is the image of k[P"] /in(q ) [proj under
the map sending xzy to 1. The Krull dimension of the latter ring equals
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that of K[P"]/I,wo5, which is the dimension of V(I) plus 1. The map
xo — 1 corresponds to intersecting with a hyperplane, and lowers the Krull
dimensional by at least 1. (More precisely: it lowers the dimension of the
components of V' (in(g,.)Iproj) that intersect A} in a nonempty set by 1,
and removes the components that do not intersect A}.) Hence we find
that, indeed, the Krull dimension of V(1) is at least k.]

To prove the fundamental theorem, we still need to prove that in,I # (1)
implies the existence of a point z € V(I) with v(x) = w. There is an easy
reduction to the case where I is prime.

So, now assume that [ is prime, and let d = dim X. We do induction
on n —d. For n —d = 1 the fundamental theorem is Kapranov’s theorem.
Suppose that n—d > 1 and that the theorem holds for smaller codimension.
The set Trop(V (1)) is the support of a polyhedral complex of dimension
< d. For each cell P, let P, be the linear span of P — w, a vector space of
dimension < d + 1 < n. By the work earlier this morning, there is a torus
homomorphism 1 : T" — T™~! that has the following properties:

(1) Y := ¢(X) is closed and of dimension d.

(2) kertrop(%) intersects each space Pp, trivially.

Now trop(+) maps trop(X) into trop(Y’), so, by the induction hypothesis
applied to Y, there is a point y € Y with v(y) = trop(¢)(w).

There is a point z € X with ¢(z) = y. This means that trop(¥)v(z) =
v(y) = trop(¢)(w). This means that w — v(x) € ker trop(¢), and since this
lies in Lp where P is such that v(x) € P, our second property of ¢ implies
that v(z) = w.



