TROPICAL GEOMETRY, LECTURE 7

JAN DRAISMA

1. Rest of §2.4

- Same assumptions as last time: $v:K^*\to\mathbb{R}$ surjective and with a section $w\mapsto t^w.$
- Spec R has two points, corresponding to the prime ideals $\{0\}$ and \mathfrak{m} . Since any proper ideal is contained in \mathfrak{m} , every non-empty closed set in the Zariski topology on Spec R contains \mathfrak{m} . Hence the closed sets are \emptyset , all of Spec R and the point corresponding to \mathfrak{m} . The point corresponding to $\{0\}$ is called the generic point, and the point corresponding to \mathfrak{m} the closed point of Spec R.
- $I \subseteq K[x_0, \ldots, x_n]$ homogeneous, $w \in \mathbb{R}^{n+1}$, then consider the ideal $I_R := \{t^{-\operatorname{trop}(f)(w)} f(t^{w_0} x_0, \ldots, t^{w_n} x_n) \mid f \in I\} \subseteq R[x_0, \ldots, x_n].$
- Since $M = R[x_0, \ldots, x_n]/I_R$ is an R-algebra, we have a map Spec $M \to \operatorname{Spec} R$. The fibre over the closed point \mathfrak{m} , called the *special fibre* is the set of prime ideals of M that intersect R in \mathfrak{m} , or the set of prime ideals in $R[x_0, \ldots, x_n]$ that contain \mathfrak{m} and I_R . This is the same thing as prime ideals of $k[x_0, \ldots, x_n]$ containing the image of I_R , which is $\operatorname{in}_w I$. So the special fibre is isomorphic to $\operatorname{spec} k[x_0, \ldots, x_n]/\operatorname{in}_w I$.
- The fibre over the generic point, called the general fibre in the book, is the set of prime ideals of M intersecting R trivially. This is just the set of prime ideals P in $R[x_0, \ldots, x_n]$ containing I_R such that $P \cap R = \{0\}$. The set $Q := K \cdot P$ of all K-scalar multiples of elements of P is then a prime ideal in $K[x_0, \ldots, x_n]$ containing I_R , and you can go back via $P = Q \cap R[x_0, \ldots, x_n]$. Thus the general fibre is in bijection with $\operatorname{Spec}(K[x_0, \ldots, x_n]/K \cdot I_R) \cong \operatorname{Spec}(K[x_0, \ldots, x_n]/I)$ where the latter isomorphism is given by the map $K[x_0, \ldots, x_n]/I \to K[x_0, \ldots, x_n]/(K \cdot I_R)$ that sends x_i to $t^{w_i}x_i$.
- There is more in the book: M is a flat R-module with $M \otimes_R K \cong (K[x_0, \ldots, x_n]/I)$ and $M \otimes_R k \cong k[x_0, \ldots, x_n]/\text{in}_w I$.
- Remark: we had chosen a splitting $\phi : \mathbb{R} \to K^*$ of the valuation to define $\operatorname{in}_w I$. Suppose we had chosen another splitting $\psi : \mathbb{R} \to K^*$, which gives rise to $\operatorname{in}'_w I$. Then $\operatorname{in}_w I$ is the image in $k[x_0, \ldots, x_n]$ of

$$\{\phi(-\operatorname{trop}(f)(w))(\phi(w_0)x_0,\ldots,\phi(w_n)x_n)\mid f\in I\}$$

and $\operatorname{in}'_{w}I$ the image of

$$\{\psi(-\operatorname{trop}(f)(w))(\psi(w_0)x_0,\ldots,\psi(w_n)x_n)\mid f\in I\}.$$

So in $_w^{\prime}I$ is the image of in $_wI$ under the map $x_i \mapsto \overline{\psi(w_i)\phi(w_i)^{-1}}x_i$, which is an automorphism of $k[x_0,\ldots,x_n]$. So all algebraic invariants of these two ideals coincide.

2. From §2.5

- Given a homogeneous ideal $I \subseteq K[x_0, ..., x_n]$, we'll define a polyhedral complex on \mathbb{R}^{n+1} , related to $\operatorname{trop}(V(I))$.
- For $w \in \mathbb{R}^{n+1}$ define

$$C_I[w] := \{ w' \in \mathbb{R}^{n+1} \mid \text{in}_{w'}I = \text{in}_w I \} \subseteq \mathbb{R}^{n+1}$$

and let $\overline{C_I[w]}$ be its closure in the Euclidean topology.

• Example. Take $I = \langle (t+t^2)x_0^2 + x_1x_2 - tx_2^2 \rangle$ where $t = t^1 \in K$ is the image of $1 \in \mathbb{R}$ under the section, and take w = (0, 1/2, 1/2). Then $\text{in}_w I = \langle t^{-1}(t+t^2)x_0^2 + x_1x_2 \rangle = \langle x_0^2 + x_1x_2 \rangle$ and

$$\overline{C_I[w]} = \overline{\{u \in \mathbb{R}^3 \mid 1 + 2u_0 = u_1 + u_2 < 1 + 2u_2\}}$$
$$= \{u \in \mathbb{R}^3 \mid 1 + 2u_0 = u_1 + u_2 \le 1 + 2u_2\}.$$

This is a half-plane with affine span the plane with equation $1 + 2u_0 = u_1 + u_2$. It is closed under adding $\mathbf{1} = (1, 1, 1)$. In $\mathbb{R}^3/\mathbb{R}\mathbf{1}$ its image is a single ray.

- Proposition. The set $\overline{C_I[w]}$ is an \mathbb{R} -rational polyhedron whose lineality space contains $\mathbb{R}\mathbf{1}$. If $\operatorname{in}_w I$ is not monomial, then there exists a w' such that $\operatorname{in}_{w'} I$ is monomial and $\overline{C_I[w]}$ is a proper face of $\overline{C_I[w']}$.
- Pick u such that $\text{in}_u \text{in}_w I$ is monomial. By last week's work, $\text{in}_{w+\epsilon u} I = \text{in}_u \text{in}_w I$ for $\epsilon > 0$ sufficiently small. Take $w' := w + \epsilon u$ for such an ϵ .

Write $\operatorname{in}_{w'}I = \langle x^{\alpha_1}, \dots, x^{\alpha_s} \rangle$. Also by last week, monomials not in $\operatorname{in}_{w'}I$ form a basis of S_K/I . Let $g_i' \in S_K$ be the linear combination of those monomials that satisfies $x^{\alpha_i} = g_i' \mod I$, so that $g_i := x^{\alpha_i} - g_i' \in I$ and no term of g_i' lies in $\operatorname{in}_{w'}I$. Then we must have $\operatorname{in}_{w'}g_i' = x^{\alpha_i}$.

We have the following finite description of $C_I[w']$:

$$C_I[w'] = \{ z \in \mathbb{R}^{n+1} \mid \forall i = 1, \dots, s : \text{in}_z g_i = x^{\alpha_i} \}.$$

Indeed, \subseteq is clear because if $z \in C_I[w']$ then $\operatorname{in}_z g_i$ is a linear combination of monomials from $\operatorname{in}_{w'}I$, and the only such monomial in g_i is x^{α_i} . Conversely, if z lies in the RHS, then $\operatorname{in}_z I \supseteq \langle x^{\alpha_1}, \dots, x^{\alpha_s} \rangle = \operatorname{in}_{w'} I$ but the two ideals have the same Hilbert function, hence they are equal.

Note that the closure $C_I[w']$ is now just the set of z for which x^{α_i} appears in $\operatorname{in}_z g_i$ for each i. This is clearly an \mathbb{R} -rational polyhedron. We claim that it contains $C_I[w]$. Indeed, if $\operatorname{in}_z I = \operatorname{in}_w I$, then $\operatorname{in}_u \operatorname{in}_z I = \operatorname{in}_u \operatorname{in}_w I = \operatorname{in}_{w'} I$ is a monomial ideal, and the only monomial of g_i in it is x^{α_i} . Thus $\operatorname{in}_u \operatorname{in}_z g_i$ must equal x^{α_i} , and hence $\operatorname{in}_z g_i$ must contain x^{α_i} .

To prove that $\overline{C_I[w]}$ is also an \mathbb{R} -rational polyhedron we show that it is a face of $\overline{C_I[w']}$. For this, we argue that

$$C_I[w] = \{ z \in \overline{C_I[w']} \mid \forall i : \text{in}_z g_i = \text{in}_w g_i \}.$$

For the inclusion \subseteq consider z in the LHS. For each i, we have $\operatorname{in}_z g_i, \operatorname{in}_w g_i \in \operatorname{in}_w I$ and hence also $r := \operatorname{in}_z g_i - \operatorname{in}_w g_i \in \operatorname{in}_w I$. But this is a polynomial none of whose terms lies in $\operatorname{in}_u \operatorname{in}_w I = \operatorname{in}_{w'} I$, which is a contradiction unless r = 0. For the opposite inclusion, pick z in the RHS. Then clearly the ideal generated by the $\operatorname{in}_z g_i$'s contains the ideal generated by the $\operatorname{in}_w g_i$'s, which is already all of $\operatorname{in}_w I$ (argue via the Hilbert function of $\operatorname{in}_u \operatorname{in}_w I$). Hence $\operatorname{in}_z I$ contains $\operatorname{in}_w I$, hence they're equal, again by the Hilbert function.

The closure of $C_I[w]$ is now clearly a face of that of $C_I[w']$: it is the set of weight vectors that "pick out from g_i at least the terms that w picks out".

The lineality space statement follows from homogeneity.

- From now on, may think $w \in \mathbb{R}^{n+1}/\mathbb{R}$ 1. (Recall that $\operatorname{in}_w f = \operatorname{in}_{w+c1} f$ if f is homogeneous).
- Theorem: the sets $\overline{C_I[w]}$, as w varies, form an \mathbb{R} -rational polyhedral complex with support all of $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$.
- (In fact, a regular subdivision of the ambient space.)
- Lemma: $I \subseteq K[x_0, \ldots, x_n]$ homogeneous. Then the set of monomial ideals of the form $\operatorname{in}_w I$ is finite. (By the well-quasi-orderedness of monomial ideals, otherwise there would be w, w' with $\operatorname{in}_w I \subseteq \operatorname{in}_{w'} I$ and both monomial. But both sides have the same Hilbert function, a contradiction.)
- Def: for a tropical polynomial $F: \mathbb{R}^{n+1} \to \mathbb{R}$ let Σ_F be the coarsest polyhedral complex such that F is affine-linear on each cell of Σ_F .
- Lemma: Let $A \in K^{r \times s}$ be of rank r and let $w \in \mathbb{R}^s$. Then we can permute the columns of A and the entries of w with the same permutation so as to achieve that the left-most $r \times r$ -submatrix U of A is invertible, and such that the matrix $B := U^{-1}A$ has $v(b_{ij}) + w_j \ge w_i$ for all i, j.
- Replace A by the matrix $A \cdot \operatorname{diag}(t^{w_1}, \dots, t^{w_s})$, and permute the columns of this new A such that the minimum of $v(\det(A[J]))$ over all r-subsets $J \subseteq \{1, \dots, s\}$ is attained by $J = \{1, \dots, r\}$. Let U and B be as in the lemma. Then we know that $v(\det B[J]) \geq 0$ for all r-sets J, with equality for $J = \{1, \dots, r\}$. What we need to prove boils down to $v(b_{ij}) \geq 0$ for all i, j. This is clearly true for $j \leq r$ (where $b_{ij} = \delta_{ij}$). So suppose, w.l.o.g., that $v(b_{i,r+1}) < 0$. Then set $J := \{1, \dots, i-1, i+1, \dots, r, r+1\}$ satisfies $v(\det(B[J])) = v(b_{i,r+1}) < 0$, a contradiction.

3. Homework

From §2.7, do exercises 16 and 26.

Furthermore, consider the ideal $I\subseteq K[x,y,z,u]$ generated by the two quadrics $f=x^2+y^2+z^2+u^2$ and h=xy+yz+zu+ux.

- (1) Determine the Hilbert function of I.
- (2) Determine all monomial initial ideals in $_{w}I$.
- (3) Determine the polynomial g from (2.5.2) in the book.
- (4) Describe $\Sigma_{\operatorname{trop}(g)}$.