
TROPICAL GEOMETRY, LECTURE 7

JAN DRAISMA

1. Rest of §2.4

• Same assumptions as last time: v : K∗ → R surjective and with a section
w 7→ tw.
• SpecR has two points, corresponding to the prime ideals {0} and m. Since

any proper ideal is contained in m, every non-empty closed set in the Zariski
topology on SpecR contains m. Hence the closed sets are ∅, all of SpecR
and the point corresponding to m. The point corresponding to {0} is called
the generic point, and the point corresponding to m the closed point of
SpecR.
• I ⊆ K[x0, . . . , xn] homogeneous, w ∈ Rn+1, then consider the ideal

IR := {t−trop(f)(w)f(tw0x0, . . . , t
wnxn) | f ∈ I} ⊆ R[x0, . . . , xn].

• Since M = R[x0, . . . , xn]/IR is an R-algebra, we have a map SpecM →
SpecR. The fibre over the closed point m, called the special fibre is the set
of prime ideals of M that intersect R in m, or the set of prime ideals in
R[x0, . . . , xn] that contain m and IR. This is the same thing as prime ideals
of k[x0, . . . , xn] containing the image of IR, which is inwI. So the special
fibre is isomorphic to spec k[x0, . . . , xn]/inwI.
• The fibre over the generic point, called the general fibre in the book, is the

set of prime ideals of M intersecting R trivially. This is just the set of prime
ideals P in R[x0, . . . , xn] containing IR such that P ∩ R = {0}. The set
Q := K ·P of all K-scalar multiples of elements of P is then a prime ideal in
K[x0, . . . , xn] containing IR, and you can go back via P = Q∩R[x0, . . . , xn].
Thus the general fibre is in bijection with Spec(K[x0, . . . , xn]/K · IR) ∼=
Spec(K[x0, . . . , xn]/I) where the latter isomorphism is given by the map
K[x0, . . . , xn]/I → K[x0, . . . , xn]/(K · IR) that sends xi to twixi.
• There is more in the book: M is a flatR-module withM⊗RK ∼= (K[x0, . . . , xn]/I)

and M ⊗R k ∼= k[x0, . . . , xn]/inwI.
• Remark: we had chosen a splitting φ : R → K∗ of the valuation to define

inwI. Suppose we had chosen another splitting ψ : R → K∗, which gives
rise to in′wI. Then inwI is the image in k[x0, . . . , xn] of

{φ(−trop(f)(w))(φ(w0)x0, . . . , φ(wn)xn) | f ∈ I}

and in′wI the image of

{ψ(−trop(f)(w))(ψ(w0)x0, . . . , ψ(wn)xn) | f ∈ I}.

So in′wI is the image of inwI under the map xi 7→ ψ(wi)φ(wi)−1xi, which is
an automorphism of k[x0, . . . , xn]. So all algebraic invariants of these two
ideals coincide.
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2. From §2.5

• Given a homogeneous ideal I ⊆ K[x0, . . . , xn], we’ll define a polyhedral
complex on Rn+1, related to trop(V (I)).
• For w ∈ Rn+1 define

CI [w] := {w′ ∈ Rn+1 | inw′I = inwI} ⊆ Rn+1

and let CI [w] be its closure in the Euclidean topology.
• Example. Take I = 〈(t + t2)x20 + x1x2 − tx22〉 where t = t1 ∈ K is the

image of 1 ∈ R under the section, and take w = (0, 1/2, 1/2). Then inwI =

〈t−1(t+ t2)x20 + x1x2〉 = 〈x20 + x1x2〉 and

CI [w] = {u ∈ R3 | 1 + 2u0 = u1 + u2 < 1 + 2u2}
= {u ∈ R3 | 1 + 2u0 = u1 + u2 ≤ 1 + 2u2}.

This is a half-plane with affine span the plane with equation 1 + 2u0 =
u1 + u2. It is closed under adding 1 = (1, 1, 1). In R3/R1 its image is a
single ray.
• Proposition. The set CI [w] is an R-rational polyhedron whose lineality

space contains R1. If inwI is not monomial, then there exists a w′ such
that inw′I is monomial and CI [w] is a proper face of CI [w′].
• Pick u such that inuinwI is monomial. By last week’s work, inw+εuI =

inuinwI for ε > 0 sufficiently small. Take w′ := w + εu for such an ε.
Write inw′I = 〈xα1 , . . . , xαs〉. Also by last week, monomials not in inw′I

form a basis of SK/I. Let g′i ∈ SK be the linear combination of those
monomials that satisfies xαi = g′i mod I, so that gi := xαi − g′i ∈ I and no
term of g′i lies in inw′I. Then we must have inw′g′i = xαi .

We have the following finite description of CI [w
′]:

CI [w
′] = {z ∈ Rn+1 | ∀i = 1, . . . , s : inzgi = xαi}.

Indeed, ⊆ is clear because if z ∈ CI [w′] then inzgi is a linear combination of
monomials from inw′I, and the only such monomial in gi is xαi . Conversely,
if z lies in the RHS, then inzI ⊇ 〈xα1 , . . . , xαs〉 = inw′I but the two ideals
have the same Hilbert function, hence they are equal.

Note that the closure CI [w′] is now just the set of z for which xαi appears
in inzgi for each i. This is clearly an R-rational polyhedron. We claim that
it contains CI [w]. Indeed, if inzI = inwI, then inuinzI = inuinwI = inw′I
is a monomial ideal, and the only monomial of gi in it is xαi . Thus inuinzgi
must equal xαi , and hence inzgi must contain xαi .

To prove that CI [w] is also an R-rational polyhedron we show that it is

a face of CI [w′]. For this, we argue that

CI [w] = {z ∈ CI [w′] | ∀i : inzgi = inwgi}.
For the inclusion ⊆ consider z in the LHS. For each i, we have inzgi, inwgi ∈
inwI and hence also r := inzgi − inwgi ∈ inwI. But this is a polynomial
none of whose terms lies in inuinwI = inw′I, which is a contradiction unless
r = 0. For the opposite inclusion, pick z in the RHS. Then clearly the ideal
generated by the inzgi’s contains the ideal generated by the inwgi’s, which
is already all of inwI (argue via the Hilbert function of inuinwI). Hence
inzI contains inwI, hence they’re equal, again by the Hilbert function.
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The closure of CI [w] is now clearly a face of that of CI [w
′]: it is the set

of weight vectors that “pick out from gi at least the terms that w picks
out”.

The lineality space statement follows from homogeneity.
• From now on, may think w ∈ Rn+1/R1. (Recall that inwf = inw+c1f if f

is homogeneous).

• Theorem: the sets CI [w], as w varies, form an R-rational polyhedral com-
plex with support all of Rn+1/R1.
• (In fact, a regular subdivision of the ambient space.)
• Lemma: I ⊆ K[x0, . . . , xn] homogeneous. Then the set of monomial ideals

of the form inwI is finite. (By the well-quasi-orderedness of monomial
ideals, otherwise there would be w,w′ with inwI ( inw′I and both mono-
mial. But both sides have the same Hilbert function, a contradiction.)
• Def: for a tropical polynomial F : Rn+1 → R let ΣF be the coarsest

polyhedral complex such that F is affine-linear on each cell of ΣF .
• Lemma: Let A ∈ Kr×s be of rank r and let w ∈ Rs. Then we can permute

the columns of A and the entries of w with the same permutation so as to
achieve that the left-most r × r-submatrix U of A is invertible, and such
that the matrix B := U−1A has v(bij) + wj ≥ wi for all i, j.
• Replace A by the matrix A · diag(tw1 , . . . , tws), and permute the columns

of this new A such that the minimum of v(det(A[J ])) over all r-subsets
J ⊆ {1, . . . , s} is attained by J = {1, . . . , r}. Let U and B be as in the
lemma. Then we know that v(detB[J ]) ≥ 0 for all r-sets J , with equality
for J = {1, . . . , r}. What we need to prove boils down to v(bij) ≥ 0 for all
i, j. This is clearly true for j ≤ r (where bij = δij). So suppose, w.l.o.g.,
that v(bi,r+1) < 0. Then set J := {1, . . . , i − 1, i + 1, . . . , r, r + 1} satisfies
v(det(B[J ])) = v(bi,r+1) < 0, a contradiction.

3. Homework

From §2.7, do exercises 16 and 26.
Furthermore, consider the ideal I ⊆ K[x, y, z, u] generated by the two quadrics

f = x2 + y2 + z2 + u2 and h = xy + yz + zu+ ux.

(1) Determine the Hilbert function of I.
(2) Determine all monomial initial ideals inwI.
(3) Determine the polynomial g from (2.5.2) in the book.
(4) Describe Σtrop(g).


