TROPICAL GEOMETRY, LECTURE 6

JAN DRAISMA

Same assumptions as last time: v : K* — R surjective and with a section
w — Y.

Lemma: let I C K[z, ..., 7,] be a homogeneous ideal and let w,u € R"*1.
Then for sufficiently small ¢ > 0 we have inyin, ! C ing4eu .

Indeed, the RHS is generated by finitely many elements in,in,, f with f € I,
and for e sufficiently small these are equal to iny ey f-

Lemma: Let J C k[zo,...,2,] be a homogeneous ideal. Then there exists
an open set U C R™*! such that for v € U the ideal in,J is constant and
generated (hence spanned) by monomials.

Indeed, let M, C in,J be the ideal generated by all monomials in in,J.

By Noetherianity of k[xo,...,z,] there exists a u such that M, is not
strictly contained in any M,,. We claim that M, = in,J. Indeed, let
fi,...,fs € J such that the m; := in, f; are monomials generating M,

and pick f € J. We need to show that all terms in in, f lie in M,. Pick a
term m corresponding to a vertex of the Newton polytope of f, and choose
a linear function u/ € R™*! for which that vertex is the minimiser. Then
for e sufficiently small, in, e, f is m, while in, 4, f; remains m;. Thus
Mytew 2 M, and by maximality of M, equality holds. Thus m lies in
M, say it is a multiple ¢tm; with ¢ a single term. Then f —tf; € J and
in,(f —tf;) = in,f — m, and by induction we on the number of terms of
in, f we're done. Finally, for each «' in some open neighbourhood of u
we have in, f; = m;, hence M,, = M, by maximality of M,, and hence
ingJ = My = M, by the argument above applied to u’ instead of u.
Lemma: let I C K|[xg,...,7,] be a homogeneous ideal, and fix w € R™*1,
Then there exists a u € R"*! and an € > 0 such that both ideals in,, (in,, (1))
and iny e, are generated (hence spanned) by monomials, and the first is
contained in the latter.

By the previous lemma applied to J := in,(I), we can choose an open
U C R™*! such that in,(in, (7)) is monomial and constant for u € U, say
generated by the monomials m; := in,(in,, f;) with f; € I fori=1,...,s.

We can take U so small and § > 0 such that, in fact, m; = ing 4, f; for all
uw € U and € € (0,9). For these (u,€) we then have inyingl C ingye, .
Among these pairs, choose a pair for which the ideal generated by the
monomials in in,¢,/ is maximal. By an argument like above, using that
we can move u by a small amount without changing in, (in,, (7)), we find
that iny e/ is generated by monomials.
Recall Hilbert functions of homogeneous ideals I C Sk := K[zg,...,Zy]
and J C Sy := k[zg,...,x]: they are the maps d — dimg(Sk)a/(I)d,
where (.)g stands for those polynomials of degree exactly d. (Note: in
the commutative algebra course, we had at most d.) For d > 0 this is
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a polynomial in d of degree one less than the Krull dimension of Sk /I.
Similarly for J.

Lemma: Let I C Sk be homogeneous, d € Z>o, and w € R™™! such that
in,, (I)4 is spanned over k by its monomials. Then the monomials of degree
d that are not in in,,(I) form a K-basis for (Sk/I)q.

Indeed, suppose that f := Zle c;m; € Iz, where the m; are distinct
monomials of degree d not in in,(I), the ¢; € K are nonzero coefficients,
and s > 0. Then the monomials appearing in the nonzero polynomial in,, f
are all in in,,(I) but also not in in,(I), a contradiction. This shows that
the monomials in the lemma are linearly indepencent. In particular, we
have dimK(SK/I)d > dimk(Sk/inw(I))d.

For the converse inequality, let the monomials my, ..., ms span in,, I and
choose f; € I; with in, f; = m;. Then fi,..., fs are linearly independent
in Si. Indeed, if f := ). a;fi € I with not all coefficients a; zero, then
in, f is the sum of the in,(a;f;) with v(a;) + trop(f;)(w) minimal, since
these do not cancel. But this is a nonzero linear combination of monomials,
hence in particular f is nonzero.

Corollary: for any w € R"™! and any homogeneous ideal I C Sk, the
Hilbert function of I agrees with that of in, (1) C S.

Proof: pick u € R"™! and € > 0 such that J; = in,(in, (1)) C Jo =
inyte ! and both are monomial ideals. By the previous lemma, monomials
not in Jy form a basis of Sk /I, and monomials not in J; form a basis of
Sk/ing, (I). Thus it remains to show that J; = Jo. Let m be a monomial in
Jo \ J1. Thus m = inyy, f for some f € I such that no monomial in in,, f
is in J;. This means that in,, f is not in in, (1), a contradiction.

Remark: in particular, the dimension of the variety C P} defined by in,,/
equals that of the variety C P’ defined by I.

Corollary: let I C Sk be a homogeneous ideal. Then for any w,u € R+l
we have in, (in, ) = in,4e, for all sufficiently small e.

The inclusion C for sufficiently small € is the first lemma. Since both ideals
have the same Hilbert function, equality holds.

In last week’s example: I = (zg + 221 — 322, 321 — 422 + 5x3) over Q with
the 2-adic valuation we had ing,,0,0)/ = (7o + o2, 21 +23) and ing g =
(xg,21). The monomials of degree d not in this ideal are x4, zg_lxg, syl
so the Hilbert function is d — d + 1. This is consistent with the fact that
V() C IP% is a projective line, as is V'(in(,,0,0y/) € IP’]%Q.

Proposition: a homogeneous Grébner basis G C I of a homogeneous ideal
I C Sk with respect to a weight vector w € R"*! generates I as an ideal.
Let I’ C I be the homogeneous ideal generated by G. Then in,I’ C in,I,
but the LHS contains the generators in,g, g € G of the RHS, so equal-
ity holds. By the corollary above, dimg (Sk/I')q = dimg(Sk/in,I")q =
dimy (S /in,I) = dimg (Sk/I)4. Together with the inclusion I’ C I this
implies that I’ = I.

Proposition: let w € T™*! and assume that I C Sk is a homogeneous prime
ideal such that Sk /I has Krull dimension d. Then for each minimal prime
J of S /in,I the ring Si/J has Krull dimension d.

Example: let I = (zy + 22) C K[z,y,2] and w = (0,0,1). Then in,I =
(xy) C k[z,y, 2] and the minimal primes above it are (z) and (y).
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Proposition: Let I C KJxg,...,z,] be an ideal generated by linear forms,
and let w € R"! such that w € Trop(Vpn+1(f)) for every circuit f. Then
there is a point p € Vpn+1(I) such that v(p) = w.

As usual, reduce to the case w = 0. Let d be the dimension of the linear
space in A}’{H defined by I. By the above, d is also the dimension of the
subvariety of AZ‘H defined by in,I. This variety is contained in V(J),
where J C in,, I is the ideal generated by (in,I);. Every set S C {1,...,n}
of variables that are linearly dependent on V' (I) are also linearly dependent
on V(J), since the initial form of a linear form with support contained in
S has support contained in S. Hence V(.J) has dimension equal to d (And,
since V(J) is irreducible, V(in,(I)) = V(J). In fact, equality of ideals
holds.) Now pick a basis B C {0,...,n} such that the x;,7 € B form a
basis of (Sg/J)1. This is then also a basis for (Sk/I);.

We claim that J does not contain any single variables. Suppose that,
on the contrary, f = Zj a;r; € I with ingf = x;, which means that the
coefficients of =, j # ¢ all have valuations > 0. Moreover, we may assume
that f has minimal support among linear forms with this property. If f
is a circuit, then this contradicts 0 € trop(V(f)). Otherwise, there is a
circuit f' =}, b;z; whose support is contained in that of f and does not
contain the index i. Consider, for ¢ € K, the combination f —c¢f’ € I.
The coefficient of z; is a; — cb;, of which the valuation is at least the
minimum of v(a;) and v(c) + v(b;). We want this to be strictly positive,
which is guaranteed by v(c) > v(a;/b;). So we pick ¢ = a;/b; for the j with
v(a;/b;) minimal. Then we find that f — f’ is a linear form with smaller
support but still with ing(f — f') = a;.

OK, so J contains no single variable. Hence V(J) contains a point
q € (k*)"*1. Now pick pj, j € B arbitrary lifts of the ¢;,7 € B. Then there
is a unique point p € Vyn+1(I) with these d coordinates. We claim that it
lies in R"*! and that in fact p; = ¢; also for i ¢ B. Indeed, for such i there
is a unique circuit f = Zj€B+i ajx; € I, say scaled such that the minimal
valuation among the a; is 0. Then ingf has support contained in B + ¢
and containing ¢ since B is a basis for ingJ, as well. This means that the
coefficient a; has valuation 0, and reducing mod m we find that p;,j € B+1
satisfy the equation ) jep @34 +a;p; = 0. Hence p; = ¢; with valuation 0
as required.

Interesting special case for later: let A be the linear map K™ — K (";),
where the coordinates on the left-hand side are called y; and those on the
right-hand side z;; with ¢ < j, defined by z;; = y; — y;. Let V C 7(%) be
the image intersected with the torus.

What is the dimension of the image?

What are the circuits for V7 This is where the name “circuits” comes from.
What are subsets of {1,..., (")} corresponding to bases? (The spanning
trees!)

Show that for each basis there is a maximal cone in trop(V).



