
TROPICAL GEOMETRY, LECTURE 4

JAN DRAISMA

1. MS §3.1 Tropical hypersurfaces

• Let (K, v) be a valued field with valuation ring R having maximal ideal m
and residue field k := R/m.
• For non-zero f ∈ K[Tn], f =

∑
α cαx

α we define trop(f) : Rn → Rn, w 7→
minα(v(cα) + α · w), the tropicalisation of f .
• Definition: the tropical hypersurface defined by f is Trop(V (f)) := {w ∈
Rn | the minimum in trop(f) is achieved at least twice}. Equivalently, this
is the set where trop(f) is nondifferentiable (or, equivalently, nonlinear).
• Remark: This is a union of Γ-rational polyhedra, where Γ is the value group

(in particular, a union of polyhedral cones if the valuation is trivial).
• Remark: suppose that Γ ⊆ R is divisible, i.e., a Q-vector space. Then the

set of Γ-valued points in any Γ-rational polyhedron is dense.
• Examples: tropical curves in the plane.
• Higher-dimensional example: the tropical determinant. Let K be arbitrary,
n = m2 with coordinates xij , i, j = 1, . . . ,m, f = det(x). tdet := trop(det)
is the function that assigns to w ∈ Rm×m the minimum of

∑
i wiπ(i) over

all permutations π ∈ Sm.
Clearly, if a1, . . . , am, b1, . . . , bm ∈ R such that ai + bj ≤ wij for all i, j,

then tdet(w) ≥
∑
i ai +

∑
j bj .

Theorem (Egerváry, look up for yourself): for each w ∈ R3×3 there exist
a1, . . . , bm ∈ R such that equality holds.

For these values, if π minimises the sum, then for each i, wiπ(i) must be
equal ai + bπ(i).

Thus, given a collection S of permutations, we can parameterise the w for
which those permutations are among the minimisers by choosing arbitrary
numbers a1, . . . , bm, setting wij = ai + bj if π(i) = j for some π ∈ S, and
wij ≥ ai + bj if no such π exists.

Consider the bipartite subgraph Σ = ΣS of Km,m with edges (i, j) if
∃π ∈ S such that π(i) = j; thus the edges of Σ are the union of a number
of perfect matchings. Adding to all ai with i in a connected component C
a real number t and subtracting t from the j in C yields the same wij for
(i, j) an edge in C. Thus the set above is a polyhedral cone of dimension
2m minus the number of connected components of ΣS (this counts the
degrees of freedom for the wij appearing in minimisers) plus the number of
non-edges of Γ (this counts the degrees of freedom for the remaining wij).

Specialise to m = 3. Up to S3×S3, there are several types of ΣS , namely:
(1) Edges (1, 1), (2, 2), (3, 3). This gives a 6− 3 + 6 = 9-dimensional cone

of w’s. There are 6 of these. These cones do not lie in trop(V (f)).
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(2) Edges (1, 1), (1, 2), (2, 2), (2, 1), (3, 3). This gives a 6 − 2 + 4 = 8-
dimensional cone. There are 3 · 3 = 9 of these.

(3) Edges (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 1). This gives a 6−1 + 3 = 8-
dimensional cone. There are 6 of these.

(4) Edges (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3). This gives a 6− 1 +
2 = 7-dimensional cone. There are 9 · 2 = 18 of these.

(5) All edges but one. This gives a 6− 1 + 1 = 6-dimensional cone. There
are 9 of these.

(6) All edges. This gives a 6− 1 = 5-dimensional cone.
This last space is the intersection of the lineality spaces of all cones,

which is the space of all sum matrices w, i.e., those with wij = ai + bj for
all i, j and suitable a, b.

We find that trop(v(f)) is a polyhedral fan of dimension 8 in 9-space.
Modulo its lineality space it is a 3-dimensional fan in 4-space. Intersect-
ing with a 3-sphere gives a spherical complex consisting of 6 triangles, 9
quadrangles, 18 edges, and 9 vertices. It looks like this:

• Kapranov’s Theorem: Assume that K is algebraically closed with a non-
trivial valuation. Then the following two sets are equal:
(1) trop(V (f)) ⊆ Rn; and
(2) the closure in the Euclidean topology of {(v(p1), . . . , v(pn)) | p ∈

V (f) ⊆ Tn}.
(Note that the value group Γ is a Q-vector space dense in R; and that

the theorem justifies the notation trop(V (f)) to some extent.)
The inclusion ⊇ is easy. The opposite inclusion we have already seen in

the special case where n = 1 (using Gauss’s lemma). Since trop(V (f)) is
the union of Γ-rational polyhedra, the set of Γ-valued points in Trop(V (f))
is dense in it. So we need only show that if (w1, . . . , wn) ∈ Trop(V (f))∩Γn,
then there exists a p ∈ V (f) with v(pi) = wi.

For convenience, choose a section Γ→ K∗, w 7→ tw of the valuation map.
Set W := trop(f)(w). Then consider the polynomial

g := t−W f(tw1x1, . . . , t
wnxn).

A term cαx
α gives rise to a term t−W cαt

α·wxα in g, of which the valuation
is v(cα) + α ·w−W ≥ 0. We will show that there is a point q ∈ V (g) such
that v(qi) = 0 for all i; then the point p := (tw1q1, . . . , t

wnqn) has valuation
vector (w1, . . . , wn) and is in V (f).

Now consider the reduction g ∈ k[x1, . . . , xn]. This is a polynomial with
at least two terms, since w ∈ Trop(V (f)). Hence there is a variable, say xn,
which appears with at least two distinct exponents in g. Write g =

∑
i gix

i
n

with gi ∈ K[Tn−1]; so there exists d < e with gd, ge 6= 0.
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Choose a point q ∈ (k∗)n−1 where gd, ge are non-zero, and lift to a
point q ∈ Rn−1. Hence gd(q), ge(q) have valuation zero. Now consider the
polynomial h(y) := g(q1, . . . , qn−1, y) ∈ K = [y]. It satisfies:
(1) trop(h)(0) = 0,
(2) h has at least two terms, and hence a root in k∗; lift this to a r ∈ R.

Then h(r) ∈ m so v(h(r)) > 0 while v(r) = 0, hence trop(h) has a tropical
root at 0. Now, by Gauss’s Lemma, h itself has a root qn with valuation 0.
• Remark: using a lemma from last time, the proof above shows that, for
w ∈ trop(V (f)) ∩ Γn, the set of points p ∈ V (f) with v(p) = w is Zariski-
dense in V (f). Indeed, its projection into Kn−1 contains a dense subset.
• A consequence of Kapranov’s theorem is that trop(V (fg)) = trop(V (f)) ∪

trop(V (g)).
• Let P be the convex hull in Rn+1 of the points (α, v(cα)) for cα 6= 0. Let
w ∈ Rn and let Fw := face(w,1)(P ). This is one of the lower faces of P , hence
projects down to one of the faces in the corresponding regular subdivision
of the Newton polytope of f . For each lower face F of P , the set

QF := {w ∈ Rn | Fw ⊇ F}

is a Γ-rational polyhedron in Rn. Some easily verifiable facts:
(1) If F ′ is a face of F in the subdivision, then QF is a face of QF ′ .
(2) The QF form a polyhedral complex, and the map F → QF is a bi-

jection sending a d-dimensional face of the subdivision to an (n− d)-
dimensional face.

(3) trop(V (f)) is the union of the (d− 1)-dimensional polyhedra QF .
• Example 3.1.9.

2. Tropical varieties

• For an ideal I ⊆ K[Tn] and its corresponding variety X = V (I) ⊆ Tn

we define trop(X) =
⋂
f∈I trop(V (f)), the tropicalisation of X or tropical

variety associated to X. Strictly speaking, it depends on I and not just on
X, but when K is algebraically closed, then it depends only on X, since,
by the Nullstellensatz, IX =

√
I and the following lemma holds.

• Lemma:
⋂
f∈I trop(V (f)) =

⋂
f∈
√
I trop(V (f)). Indeed, the RHS is clearly

contained in the LHS. For the opposite, note that if f ∈
√
I, then fd ∈ I for

some d ≥ 1, and by the consequence to Kapranov’s theorem, trop(V (fd)) =
trop(V (f)).
• Lemma: When I = (f), the definition above agrees with our definition

earlier. Indeed, for each g ∈ (f), say g = hf , we have trop(V (g)) =
trop(V (h)) ∪ trop(V (f)), which contains trop(V (f)).
• Chapter 3 concerns the structure of tropical varieties. In particular, it

proves that such an object is a polyhedral fan, and that an analogue of
Kapranov’s theorem holds (the “fundamental theorem of tropical geome-
try”). But the methods use somewhat technical material from Chapter 2,
which we will make a start with next week.
• One inclusion in the fundamental theorem is easy: trop(V (I)) contains the

image of V (I) ⊆ Tn under the coordinate-wise valuation map into Rn.
• Remark: in the definition, it is not sufficient to take the intersection over

a generating set of I.
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• Example: Linear spaces. Let I be generated by linear forms in the variables
xi, and that it does not contain variables, so that V (I) ⊆ Tn is non-empty.
The support of a linear form is the set of variables appearing in it. Let S be
the collection of supports of linear forms in I. For each inclusion-minimal
nonempty support in S there is, up to scaling, a unique linear form in I
with that support. Let C be the finite set of such representatives; these are
the circuits of the linear space.
• Theorem: if I is generated by linear forms, then trop(V (I)) =

⋂
f∈C trop(V (f)).

We’ll see a proof later.


	1. MS §3.1 Tropical hypersurfaces
	2. Tropical varieties

