TROPICAL GEOMETRY, LECTURE 4

JAN DRAISMA

1. MS §3.1 TROPICAL HYPERSURFACES

Let (K,v) be a valued field with valuation ring R having maximal ideal m
and residue field k := R/m.

For non-zero f € K[T"], f = " cax® we define trop(f) : R — R", w —
ming (v(cy) + - w), the tropicalisation of f.

Definition: the tropical hypersurface defined by f is Trop(V(f)) := {w €
R™ | the minimum in trop(f) is achieved at least twice}. Equivalently, this
is the set where trop(f) is nondifferentiable (or, equivalently, nonlinear).
Remark: This is a union of I'-rational polyhedra, where I is the value group
(in particular, a union of polyhedral cones if the valuation is trivial).
Remark: suppose that I' C R is divisible, i.e., a Q-vector space. Then the
set of I'-valued points in any I'-rational polyhedron is dense.

Examples: tropical curves in the plane.

Higher-dimensional example: the tropical determinant. Let K be arbitrary,
n =m? with coordinates z;;,i,j = 1,...,m, f = det(z). tdet := trop(det)
is the function that assigns to w € R™*™ the minimum of ), w; ¢ over
all permutations m € S,,,.

Clearly, if a1,...,am,b1,...,byp € R such that a; + b; < w;; for all 4, 7,
then tdet(w) > >, a; + 3, b;.

Theorem (Egervary, look up for yourself): for each w € R3*3 there exist
ai,...,by, € R such that equality holds.

For these values, if m minimises the sum, then for each i, w;.;) must be
equal a; + by (-

Thus, given a collection S of permutations, we can parameterise the w for
which those permutations are among the minimisers by choosing arbitrary
numbers aq, ..., by, setting w;; = a; + b; if w(i) = j for some = € S, and
w;; > a; + b; if no such 7 exists.

Consider the bipartite subgraph ¥ = Xg of K, », with edges (i,7) if
Im € S such that 7(¢) = j; thus the edges of ¥ are the union of a number
of perfect matchings. Adding to all a; with 7 in a connected component C
a real number ¢ and subtracting ¢ from the j in C yields the same w;; for
(i,4) an edge in C. Thus the set above is a polyhedral cone of dimension
2m minus the number of connected components of ¥g (this counts the
degrees of freedom for the w;; appearing in minimisers) plus the number of
non-edges of I' (this counts the degrees of freedom for the remaining w;;).

Specialise to m = 3. Up to S3 x S3, there are several types of X g, namely:

(1) Edges (1,1),(2,2),(3,3). This gives a 6 — 3 + 6 = 9-dimensional cone
of w’s. There are 6 of these. These cones do not lie in trop(V (f)).
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(2) Edges (1,1),(1,2),(2,2),(2,1),(3,3). This gives a 6 — 2 + 4 = 8
dimensional cone. There are 3 -3 =9 of these.

(3) Edges (1,1),(1,2),(2,2),(2,3),(3,3),(3,1). This givesa6—14+3 = 8-
dimensional cone. There are 6 of these.

(4) Edges (1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3). This givesa 6 — 1+
2 = 7-dimensional cone. There are 9 - 2 = 18 of these.

(5) All edges but one. This gives a 6 — 1+ 1 = 6-dimensional cone. There
are 9 of these.

(6) All edges. This gives a 6 — 1 = 5-dimensional cone.

This last space is the intersection of the lineality spaces of all cones,
which is the space of all sum matrices w, i.e., those with w;; = a; 4 b; for
all 7, 7 and suitable a, b.

We find that trop(v(f)) is a polyhedral fan of dimension 8 in 9-space.
Modulo its lineality space it is a 3-dimensional fan in 4-space. Intersect-
ing with a 3-sphere gives a spherical complex consisting of 6 triangles, 9
quadrangles, 18 edges, and 9 vertices. It looks like this:

Kapranov’s Theorem: Assume that K is algebraically closed with a non-
trivial valuation. Then the following two sets are equal:
(1) trop(V(f)) € R"; and
(2) the closure in the Euclidean topology of {(v(p1),...,v(pn)) | » €
V(f) C T},

(Note that the value group I' is a Q-vector space dense in R; and that
the theorem justifies the notation trop(V(f)) to some extent.)

The inclusion D is easy. The opposite inclusion we have already seen in
the special case where n = 1 (using Gauss’s lemma). Since trop(V(f)) is
the union of I'-rational polyhedra, the set of I'-valued points in Trop(V (f))
is dense in it. So we need only show that if (wq,...,w,) € Trop(V(f))NI™,
then there exists a p € V(f) with v(p;) = w;.

For convenience, choose a section I' — K*, w — t% of the valuation map.
Set W := trop(f)(w). Then consider the polynomial

g =t Wt rmy, .. t,).

A term cox® gives rise to a term t =W, t*™Wx® in g, of which the valuation
isv(cq) +a-w—W > 0. We will show that there is a point ¢ € V(g) such
that v(g;) = 0 for all ; then the point p := (t**¢,...,t“"q,) has valuation
vector (wy, ..., wy,) and is in V(f).

Now consider the reduction g € k[x1, ..., x,]. This is a polynomial with
at least two terms, since w € Trop(V'(f)). Hence there is a variable, say x,,
which appears with at least two distinct exponents in g. Write g =", gzt
with g; € K[T™1]; so there exists d < e with gg, g # 0.
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Choose a point § € (k*)"~! where gg,ge are non-zero, and lift to a
point ¢ € R™~. Hence g4(q), g.(q) have valuation zero. Now consider the
polynomial h(y) := g(q1,---,qn-1,y) € K = [y]. Tt satisfies:

(1) trop(R)(0) = 0,

(2) h has at least two terms, and hence a root in k*; lift this to a r € R.

Then h(r) € m so v(h(r)) > 0 while v(r) = 0, hence trop(h) has a tropical
root at 0. Now, by Gauss’s Lemma, h itself has a root ¢, with valuation 0.
Remark: using a lemma from last time, the proof above shows that, for
w € trop(V(f)) NT™, the set of points p € V(f) with v(p) = w is Zariski-
dense in V(f). Indeed, its projection into K™"~! contains a dense subset.
A consequence of Kapranov’s theorem is that trop(V(fg)) = trop(V(f)) U
trop(V ().
Let P be the convex hull in R"*! of the points (o, v(cy)) for ¢ # 0. Let
w € R™ and let F,, := face(, 1)(P). This is one of the lower faces of P, hence
projects down to one of the faces in the corresponding regular subdivision
of the Newton polytope of f. For each lower face F' of P, the set

QF:{’UJGRn|Fw2F}

is a I'-rational polyhedron in R™. Some easily verifiable facts:

(1) If F’ is a face of F in the subdivision, then Qr is a face of Qp.

(2) The Qp form a polyhedral complex, and the map F' — Qp is a bi-
jection sending a d-dimensional face of the subdivision to an (n — d)-
dimensional face.

(3) trop(V(f)) is the union of the (d — 1)-dimensional polyhedra Q.

Example 3.1.9.

2. TROPICAL VARIETIES

For an ideal I C K[T™] and its corresponding variety X = V(I) C T"
we define trop(X) = (¢, trop(V(f)), the tropicalisation of X or tropical
variety associated to X. Strictly speaking, it depends on I and not just on
X, but when K is algebraically closed, then it depends only on X, since,
by the Nullstellensatz, Ix = VT and the following lemma holds.

Lemma: (¢ trop(V(f)) = ez trop(V(f)). Indeed, the RHS is clearly

contained in the LHS. For the opposite, note that if f € /I, then f? € I for
some d > 1, and by the consequence to Kapranov’s theorem, trop(V (f%)) =
trop(V (/).

Lemma: When I = (f), the definition above agrees with our definition
earlier. Indeed, for each g € (f), say g = hf, we have trop(V(g)) =
trop(V'(h)) U trop(V (f)), which contains trop(V (f)).

Chapter 3 concerns the structure of tropical varieties. In particular, it
proves that such an object is a polyhedral fan, and that an analogue of
Kapranov’s theorem holds (the “fundamental theorem of tropical geome-
try”). But the methods use somewhat technical material from Chapter 2,
which we will make a start with next week.

One inclusion in the fundamental theorem is easy: trop(V(I)) contains the
image of V(I) C T™ under the coordinate-wise valuation map into R™.
Remark: in the definition, it is not sufficient to take the intersection over
a generating set of I.
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e Example: Linear spaces. Let I be generated by linear forms in the variables
x;, and that it does not contain variables, so that V(I) C T™ is non-empty.
The support of a linear form is the set of variables appearing in it. Let S be
the collection of supports of linear forms in I. For each inclusion-minimal
nonempty support in S there is, up to scaling, a unique linear form in [
with that support. Let C' be the finite set of such representatives; these are
the circuits of the linear space.

e Theorem: if I is generated by linear forms, then trop(V (1)) = (¢ trop(V(f)).
We'll see a proof later.
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