
TROPICAL GEOMETRY, LECTURE 3

JAN DRAISMA

1. MS §2 Algebraic varieties

• Assume K algebraically closed.
• The coordinate ring K[An] of An is K[x1, . . . , xn]; the homogeneous coor-

dinate ring K[Pn] of Pn is K[x0, . . . , xn]; and the coordinate ring K[Tn] is
K[x1, x

−1
1 , . . . , xn, x

−1
n ].

• Recall that each of these rings is Noetherian (Hilbert’s basis theorem): any
ideal is generated by finitely many elements.
• An becomes a topological spaces equipped with the Zariski-topology, in

which a closed subset is of the form X = V (I) := {p ∈ An | f(p) = 0∀f ∈
I}. Such closed subsets are called affine varieties.
• Similarly for Pn and Tn, where I needs to be spanned by homogeneous poly-

nomials in the case of projective space (Why??). The varieties are called
projective or very affine varieties, respectively. (The term toric variety,
which you may expect in the last case, is reserved for something else.)
• The topology is Noetherian in each case: any decreasing sequence of closed

subsets stabilises. This has as a consequence that each variety can be
written uniquely as an irredundant union of irreducible closed subsets.
• Example: the affine variety of pairs (A,B) of 2×2-matrices with A ·B = 0.

This means that the column space of B is contained in the kernel of A.
There are three irreducible components: A = 0 or B = 0 and the rest. The
intersection with the torus T 8 has only one irreducible component.
• Can also go back: if X is a subset of affine space, projective space, or the

torus, then IX is the ideal of all polynomials vanishing on X.
• In general, IV (I) 6= I; indeed, the left-hand side contains

√
I. Since the

field is algebraically closed, equality holds (Hilbert’s Nullstellensatz).
• A homogeneous ideal I ⊆ K[x0, . . . , xn] is also the ideal of a variety in
Kn+1; this is called the cone over the corresponding projective variety.
• We have dense embeddings Tn → An → Pn (dense, provided the field is

infinite). Call the first one i and the second one j. The affine closure of

a very affine variety X ⊆ Tn is i(X). The projective closure of an affine

variety X ⊆ An is j(X). At the level of ideals, we have the following.

Proposition 1.1. Let X = VTn(I) be a very affine variety in Tn, where I ⊆ K[Tn].

Then i(X) = VAn(I ∩K[An]).

Proof. For the inclusion ⊆ note that the right-hand side is closed and contains
i(X). For ⊇ suppose that p lies in the right-hand side but not in the closure of
i(X). Then there is a polynomial f ∈ K[An] that vanishes identically on i(X) but
not on p. By the Nullstellensatz (applied to K[Tn]), some power of f lies in I. But
this power then also lies in K[An] ∩ I, hence vanishes on p, a contradiction. �

1



2 JAN DRAISMA

Similarly: a polynomial f ∈ K[x1, . . . , xn] has a well-defined homogenisation

f̃ ∈ K[x0, . . . , xn]. For an ideal I in K[x1, . . . , xn] define Iproj as the ideal generated

by all f̃ as f runs through I.

Proposition 1.2. Let X = VAn(I) be an affine variety. Then j(X) = VPn(Iproj).

Proof. The inclusion ⊆ is easy again. For the opposite, let p be in the set on the
right and not in the set on the left. There is some homogeneous f ∈ K[x0, . . . , xn]
that vanishes on j(X) but not on p. Then g := f(1, x1, . . . , xn) vanishes on X,
hence by the Nullstellensatz some power gd lies in I. Homogenenising gd gives a
polynomial in Iproj, which vanishes on p by assumption. But this polynomial is a
nonnegative power of x0 times fd, hence f vanishes on p, a contradiction. �

For a lot of tropical geometry, we will be considering only varieties in Tn (this
avoids infinite coordinates).

• The ring K[An]/IX , where X is an affine veriety, is called the coordinate
ring of X. Similarly for very affine varieties (coordinate ring) and projective
varieties (homogeneous coordinate ring).
• A morphism φ : X → Y between affine varieties is given by a K-algebra

homomorphism φ∗ : K[Y ] → K[X]. (This is a contravariant functor be-
tween finitely generated K-algebras without nilpotent elements and affine
varieties.) Similarly for very affine varieties (for projective varieties the
situation is more intricate).

• Important for tropical morphisms are morphisms φ : Tn → Tm. These
are given by homomorphisms φ∗ : K[Tm] → K[Tn]. These must map
any invertible element on the left to an invertible element on the right.
The invertible elements are precisely the monomials times non-zero scalars.
Thus every variable xj on the left must be mapped to a monomial in the yi
times a non-zero scalar on the right. After dividing by those non-zero scalars
(an automorphism of Tn, we end up with a monomial map φ∗ : xj 7→ yαj ,
where αj ∈ Zn. These form the columns of an n×m-matrix over Z.

• Automorphisms Tn → Tn thus correspond (apart from those scalars) to
matrices in GLn(Z), i.e., integral square matrices with determinant ±1.

Lemma 1.3. The group GLn(Z) acts transitively on subgroups L ⊆ Zn the quotient
by which is torsion-free.

This follows from the Smith normal form.
Next, we discuss Grassmannians.

• As a set, G(r,m) is the set of r-dimensional subspaces of Km.
• Represent a U in this set by an r ×m-matrix A whose rows are the basis

of U .
• Two matrices A and B of full rank r represent the same U iff they differ

via left-multiplication with an invertible r × r-matrix.
• Map A to its vector of all r× r-subdeterminants (minors). This is a vector
v with

(
m
r

)
entries.

• The map U 7→ [v] ∈ P(m
r )−1 is well-defined and gives an injective map from

G(r,m) into this projective space.
• The image is a projective variety cut out by certain quadratic equations

called the Plücker relations. This projective variety is called the Grass-
mannian G(r,m).
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• In particular, consider the case r = 2 and m = 4 in detail.

Next, we prove a lemma relating sets defined by means of the valuation and the
Zariski topology.

Lemma 1.4. Assume K is a non-trivially valued field with valuation group Γ and
a section w 7→ tw of the valuation. Let w1, . . . , wn ∈ Γ and α1, . . . , αn ∈ k∗. Then
the set of all (y1, . . . , yn) ∈ (K∗)n with v(yi) = wi and t−wiyi = αi is Zariski-dense
in (K∗)n.

Proof. Induction on n. For n = 0 the statement is trivially true. Suppose the
statement is true for n − 1, and let h ∈ K[x1, . . . , xn] be a non-zero polynomial.
We need to show that there is a point y as in the lemma such that h(y) 6= 0. Write
h = h0 + . . .+ hdx

d
n with hi ∈ K[x1, . . . , xn−1] and hd 6= 0. By induction, there is

y′ = (y1, . . . , yn−1) satisfying the lemma such that hd(y
′) 6= 0. We need to find a

yn satisfying the lemma which is not a root of the non-zero univariate polynomial
h(y′, t). We prove that there are infinitely many yn satisfying the conditions of the
lemma: pick zn ∈ K with zn = αn and set yn := twnzn + rn where v(rn) is larger
than wn. There are infinitely many such rn by nontriviality of the valuation. �

2. Some polyhedral geometry

• Definitions: closed convex set in Rn; can be described as the convex hull
of its points or, alternatively, as the intersection of the closed halfspaces
containing it. (This is a theorem, not a triviality.)
• The dimension of a convex set is the dimension of its affine span. Its relative

interior is its interior when considered as a subset of its affine span.
• Definition: (exposed) face of a convex closed set.
• Special case: closed convex cones; can be described as the positive hull of

its intersection with a sphere and or as the the intersection of the closed
halfspaces with 0 on their boundary containing it.
• Polyhedron: intersection of finitely many closed half-spaces.
• Special case: polyhedral cone, intersection of finitely many closed halfspaces

with 0 on their boundaries. Equivalently (theorem): the positive hull of
finitely many vectors.
• A bounded polyhedron is called a polytope. Equivalently (theorem): the

convex hull of finitely many points.
• (For these convex sets, all faces are exposed.)
• Definition: polyhedral complexes. Special case: polyhedral fans.
• Definition: common refinement of two polyhedral complexes.
• Definition: Γ-rational polyhedron.
• Definition: normal fan of a polytope P . Cells are labelled by faces F of P ,

and the cone corresponding to F is

NP (F ) := {w | facew(P ) ⊇ F}.

Check that this is a fan!
• Definition: Minkowski sum. Useful facts: normal fan of the Minkowski sum

is the common refinement of the normal fans.
• Definition: Newton polytope. Minkowski sum of Newton polytopes is New-

ton polytope of product.
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• The star of a polyhedral complex at a cell σ is a polyhedral fan whose cones
are labelled by cells τ containing σ. The cone is

τ := {λ(x− y) | x ∈ τ, y ∈ σ}.
Check that this is a polyhedral fan. For instance, τ ∩ τ ′ = τ ∩ τ ′.
• The regular subdivisions of v1, . . . , vr ∈ Rn corresponding to a weight vector
w ∈ Rr: Lift vi to a point (vi, wi) ∈ Rn+1, and take all the faces of the
convex hull of the lifted polytope picked out by weight vectors with positive
last coordinate. Project these down into P , the convex hull of v1, . . . , vr.
This gives a polyhedral complex.

3. Homework (hand in by October 9)

Paragraph 2.7: exercises 6, 7, 10, 11.


