TROPICAL GEOMETRY, LECTURE 2

JAN DRAISMA

1. TrROPICAL BEzouT

Last time we saw properties of tropical plane curves. In fact, they characterise
such objects.

Proposition 1.1. Let X be a finite collection of positive-length line segments and
half-line rays in R2, any two of which either do not intersect or else intersect in a
common endpoint. Assume that each element of 2 has rational slope and is assigned
a positive integral weight such that balancing holds at each endpoint of any element
of X. Then ¥ arises as the set of edges and rays of a tropical curve V(f) for some
f € Ruo[z,y].

In ordinary algebraic geometry, curves of degree d, e intersect in de points, pro-
vided that they intersect transversally. A similar result holds in tropical geometry.

Definition 1.2. Let f, g € R[z,y] be non-infinity polynomials, and assume that
the line segments and rays in V(f) and those of V(g) intersect transversally. At
each intersection point a € V(f) NV (g), let m,n be the weights of the edges of
V(f),V(g) through a. The intersection multiplicity of V(f) and V(g) at a equals
m - n - | det(v|w)| where v,w € Z? are primitive vectors in the directions of V'(f)
and V(g) near a. Call this number m,(f, g).

Proposition 1.3 (Tropical Bézout). Assume that the Newton polygons of f,g €
Reo[z,y] are the triangles with vertices (0,0),(d,0),(0,d) and (0,0), (e,0), (0,e),
respectively, and that V(f) and V(g) intersect transversally. Then
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Proof. Translate V(f) in a direction (1,b), where we choose b < 0 sufficiently
generic such that the only combinatorial changes that happen at a time are that a
single segment of V'(f) passes through a single vertex a of V(g) (and possibly, in the
process, coincides with one or two segments of V' (g) emanating from that vertex), or
vice versa—but in such a way that immediately afterwards, the intersection is again
transversal. To analyse what happens in such a change, suppose that an edge of
V' (f) with primitive vector v passes through a vertex of V(g) with incident segments
with primitive vectors vy, ..., vx and multiplicities my, ..., mx. Then the segment of
V(f) intersects some of these segments before the combinatorial change, say those
corresponding to vy, ...,v;, and some of these segments after the combinatorial
change, say vj41,...,Vp, and is parallel to the remaining k —p € {0, 1,2} segments.
Now we have, by balancing,
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Here det(v|v;) has a constant sign for ¢ = 1,...,l, the opposite sign for i = [ +
1,...,p, and is zero for ¢ = p+1,...,k. This gives that the contribution of the
intersection points of V(f) and V(g) near a remains constant in the process.

Now V(f) has d rays in each of the directions north, east, and south-west
(counted with weights), and V' (g) has e; and these are the only unbounded seg-
ments. Here we use the form of the Newton polygon. Hence after translating V' (f)
as above, we eventually end up with a situation where the only intersection points
are those among the d northward rays of V(f) and the e eastward rays of V(g).
There are de of these (counted with multiplicities). O

2. MS §2.1 MORE ON VALUED FIELDS

e Recall the notion of field valuations v : K — R.

e R :={a € K | v(a) > 0} is subring. It has a unique maximal ideal
m:= {a € K | v(a) > 0}. The field k := R/m is called the residue field of
K.

e For K = Q with the p-adic valuation, k = Fp; for K = C((¢)) with the
t-adic valuation, k = C.

e If K is algebraically closed, then so is k.

e K carries a norm determined by |a| := 27%(®), This induces a metric on K;
R is the closed unit sphere around 0 in this norm.

e K with this metric is complete if and only if any series a; + as + -+ in
which the a; € K tend to zero converges [=: the set of partial sums form a
Cauchy sequence since v(am + Gmt1 + - - . + apn) > min{v(am), ..., v(an)};
and <=: if by, bg, ... form a Cauchy sequence, then set a; := b;1.1 — b;; these
form a sequence as above, whose series converges; the limit is the limit of
the sequence (b;);.]

e C((t)) is complete.

o C{{t}} := U,y C((t'/™)) is the field of Puiseuz series over C. It is not
complete, since for instance t2/1 4 5/2 4 $10/3 4 $17/4 L ... 4 (D /n
does not converge.

Proposition 2.1. K := C{{t}} is algebraically closed.

e When a field k has characteristic p, the field k{{¢}} is not algebraically
closed; see below.

e This motivates the following definition. Let G C R be any divisible sub-
group, and let k((G)) be the set of series Y, 4 ¢;t* where A is a well-ordered
subset of G. These form a field, and if k is algebraically closed, it is an alge-
braically closed, valued extension of k((t)) (the fact that it is algebraically
closed is nontrivial).

e Example: take G = Q and k and field of characteristic p. The polynomial
2P —x —t~1 € k((t)) has roots (t71/? +t=1/®) 4...) 4 ¢ for each ¢ € F,,.
These lie in k((G)) but not in k{{t}} as the denominators of the exponents
are unbounded. Hence the latter field is not algebraically closed.

It will be useful to have, in general, a section to a valuation.
Lemma 2.2. Suppose that (K,v) is a valued field such that for each a € K with

v(a) = 0 and for each positive integer n, there there exists exists an element b € K
with b™ = a. Then there is a map ¥ : T' = K such that ¥(a + b) = ¢¥(a)(b) and

v(P(a)) = a.
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The proof of this lemma uses the following general fact.

Lemma 2.3 (Divisible groups are direct summands.). Let (A,4,0) be an Abelian
group and U C A a divisible subgroup, i.e., a subgroup such that for all nU = U
for all positive integers n. Then A has a subgroup W such that A=U @ W.

Proof. Consider all subgroups W C A that intersect U only in 0. By Zorn’s lemma,
there is a maximal subgroup W with this property. We claim that U + W = A.
Indeed, suppose that a € A\ (U + W). By maximality of W, we have na + w =
u € U\ {0} for some n > 0. Pick n minimal with this property; this is the order of
the image of a in A/(U + W). Since a ¢ U + W, we have n > 1. Pick v’ € U such
that nu' = u.

Now W+ (u' —a) is strictly larger than W, and we claim that it does not intersect
U in any element u” other than 0. Indeed, such an element would be of the form
w” + m(u’ — a) with m a multiple of n, so w” + (m/n)w € W. O

Proof of Lemma 2.2. The map v : (K*,-) — (R,+) is a group homomorphism
whose kernel is divisible by assumption. So by the preceding lemma, we can write
K* = ker(v)-W, where W is a subgroup intersecting ker(v) trivially. Now v restricts
to an isomorphism W — im(v), so we can take ¢ equal to its inverse. O

Remark 2.4. Many of our examples will be over the field over Puiseux series
with C coefficients. However, a general Puiseux series cannot be represented on a
computer, so in practice the field elements we work with will be rational functions

in Q(¢).

There is more material on valued extensions, with references to the literature,
but this is all we will need.

3. MS §2 ALGEBRAIC VARIETIES

e Fix a field K.
e Our algebraic varieties will (almost) always be embedded in one of the
following three ambient spaces:

(1) A™ = A} = K", the n-dimensional affine space with coordinates
TlyennsTps

(2) Pr =P% = (K"'\ {0})/ ~, the n-dimensional projective space where
two non-zero vectors (g, ..., &n) ~ (Yo, - - -, Yn) iff one is a scalar mul-
tiple of the other. We write [z : ... : x,] for the equivalence class of
(T, .., ZTn)-

(3) T" =Tp = (K*)™, the n-dimensional torus.

e The coordinate ring K[A"] of A" is K[z1,...,x,]; the homogeneous coor-
dinate ring K[P"] of P™ is K|xo, ..., 2,]; and the coordinate ring K[T"] is
Klzy, 27t .. e, 2t

e Recall that each of these rings is Noetherian (Hilbert’s basis theorem): any
ideal is generated by finitely many elements.

e A" becomes a topological spaces equipped with the Zariski-topology, in
which a closed subset is of the form X = V(1) :={p € A" | f(p) = OVf €
I}. Such closed subsets are called affine varieties.

e Similarly for P™ and 7™, where I needs to be spanned by homogeneous poly-
nomials in the case of projective space (Why??). The varieties are called
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projective or very affine varieties, respectively. (The term toric variety,
which you may expect in the last case, is reserved for something else.)
The topology is Noetherian in each case: any decreasing sequence of closed
subsets stabilises. This has as a consequence that each variety can be
written uniquely as an irredundant union of irreducible closed subsets.
Example: commuting variety of pairs (A4, B) of 2 x 2-matrices (over C).
Contains as an open set the set where A has two distinct eigenvalues, which
is contained in {(gDg~',gEg~"') | g € GLy and D, E diagonal}. This set,
and hence its closure, are irreducible. Why is this closure the entire com-
muting variety? It certainly contains the pairs where A is a scalar multiple
of the identity, by taking D equal to A and using that the diagonalisable
matrices gEg~! are dense the space of 2 x 2-matrices B. So only the case
left is where A is of the form
a 1

=[5
In this case, AB = BA forces that B = sA + tI, so if we take a sequence
of g;, D; such that giDigi_l converges to A, then with F; := sD; + tI the
matrix g;F;g; ! converges to B. Thus the commuting variety is irreducible.
(It also is for larger matrices.)
Example: variety of pairs (A, B) with A - B = 0. This means that the col-
umn space of B is contained in the kernel of A. There are three irreducible
components: A =0 or B =0 and the rest.
Can also go back: if X is a subset of affine space, projective space, or the
torus, then I'x is the ideal of all polynomials vanishing on X.
In general, Iy () # I; indeed, the left-hand side contains VI. When the
field is algebraically closed, equality holds (Hilbert’s Nullstellensatz).
A homogeneous ideal I C Klxg,...,x,] is also the coordinate ring of a
variety in K™ t1; this is called the cone over the corresponding projective
variety.
We have dense embeddings 7" — A™ — P™.
For a lot of tropical geometry, we will be considering only varieties in 7™
(this avoids infinite coordinates).



