
TROPICAL GEOMETRY, LECTURE 13

JAN DRAISMA

1. Reminder: divisor class groups of curves

For a smooth, projective curve X over an algebraically closed field K:

• Div(X) := ZX is the group of divisors

• Notation: D(x) for the coefficient of x ∈ X in D.
• Degree map deg : Div(X) → Z, D 7→

∑
x∈X D(x) and Divd(X) := {D ∈

Div(X) | deg(D) = 0}.
• For a rational function f on X, ÷f ∈ Div(X) is defined as (÷f)(x) =the

order of vanishing of f at x. (Positive for roots, negative for poles.)
• Example: X = P1, f = x

x2−2x+1 = xy
x2−2xy+y2 has ÷f = (0 : 1) − 2(1 :

1) + (1 : 0). Has degree 0; this is a general fact for rational functions.
• The divisors of the form ÷f are called principal; they form a subgroup

Prin(X) of Div0(X).
• The quotient Prin(X) := Div(X)/Prin(X), the divisor class group, still has

the degree homomorphism to Z. The kernel Prin0(X) has the structure of
a compact, abelian, algebraic group of dimension the genus of X.
• We write D ∼ E if D − E ∈ Prin(X) and say that they are linearly equiv-

alent; write [D] for the class of D modulo Prin(X).
• Example: for P1 the group Div0(X)/Prin(X) is trivial; for an elliptic curve
X with a distinguished point p0 ∈ X (so that X is a group with neutral
element p0), it is isomorphic to X via the map that sends p 7→ [p− p0].

[Part of the verification is this: embed X in P2 with homogeneous co-
ordinates (x : y : z) as a cubic curve such that p0 is the only point
of X at infinity. Then, in the group structure of the elliptic curve X,
p + q + r equals the neutral element p0 if and only if they are the inter-
section points (with multiplicities) of a line in P2 with X. In that case,
let l be the defining linear form of that line, and set f := l/z. We find
that ÷(f) = −3p0 + p + q + r, and hence that the sum of the divisors
[p− p0] + [q − p0] + [r − p0] = [p + q + r − 3p0] = [÷(f)] = 0.
• E ∈ Div(X) is called effective if E(x) ≥ 0 for all x. We then write E ≥ 0,

and for general divisors we write F ≥ D iff F −D ≥ 0.
• Given D ∈ Div(X), the set |D| := {E ∈ Div(X) | E ∼ D and E effective}

is called the complete linear system of D. It has a bijection with the pro-
jective space of the vector space {f rational | ÷(f) ≥ −D}. Note that this
is, indeed, a vector space, since (÷(f + g))(x) is at least the minimum of
(÷f)(x) and (÷g)(x). (That this is a bijection uses that a rational function
is determined up to a scalar by its poles, which is one of the reasons why
we need to assume that X is projective). This vector space is has finite
dimension r(D) + 1, where r(D) is called the rank of D.
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• Tropicalised curves (say, in Tn) are one-dimensional polyhedral complexes,
with natural edge lengths (lattice length).
• Rational functions on Tn correspond to differences of tropical polynomials.

2. Divisor class groups of graphs

• Let X be a connected metric graph, obtained by gluing, in some manner,
finite-length closed intervals along their endpoints.
• Elements of Div(X) = ZX are called divisors on X, notation D(x) as

before.
• deg : Div(X)→ ZX is the degree map, Divd(X) the set of degree-d divisors.
• f : X → R is called (tropical) rational if it is continuous and linear with

integral slopes outside a finite number of points.
• Rational functions on X form a group M(X) with respect to addition (trop-

ical multiplication).
• ÷f ∈ Div(X) is defined by (÷f)(x) = the sum of the incoming slopes of f

at x. If x has valency 2, then rational functions locally concave at x have a
root there and rational functions locally convex at x have a pole. ÷f is the
principal divisor associated to f . Write Prin(X) := {÷(f) | f ∈M(X)}.
• Note that ÷f has degree 0: for every segment where f is linear, its incoming

slope at one endpoint is minus its incoming slope at the other endpoint.
• ÷ is a group homomorphism from (M(x),�) to Div0(X). So its image

Prin(X) is a subgroup of Div0(X).
• Note also that ÷f determines f up to a tropically multiplicative (i.e., ad-

ditive) scalar.
• The group Prin(X) := Div(X)/Prin(X) is called the divisor class group of
X. The class of D is denoted [D]. Prin(X) has the degree homomorphism
into Z, whose kernel is Prin0(X) = Prin(X) ∩Div0(X).
• Let g be the first Betti number of X (i.e., the number of cuts you need

to make to make X into a metric tree). Theorem: the group Prin0(X) is
isomorphic to (S1)g as a topological group. We will also call g the genus of
X.

3. Dhar’s burning algorithm

• Fix a point q ∈ X. This algorithm chooses a unique Dq of a divisor D ∈
Div(X), with support “as close as possible” to q. It is called the q-reduced
representative of [D] and has the following properties:
(1) Dq ∼ D;
(2) Dq is effective outside q;
(3) Any nonempty closed subset Y ⊆ X not containing q has at least one

boundary point y where Dq(y) is strictly less than the number of edges
emanating from y into X \ Y .

• I’ll describe it for a D that is already effective outside q. Think of D as
putting D(x) ≥ 0 chips on finitely many points x outside q, and a possibly
negative number of chips at q.
(1) Initialise F := D.
(2) Start burning a small open neighbourhood of q in X containing no

chips except possibly at q; chips (or negative chips) of F at q will
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always remain there. We agree that the burned set will always be
open, connected, and contain q.

(3) If the fire arives at a point p ∈ X from more directions than F has
chips at p, then the fire passes through p.

(4) If all of X burns, then output Dq := F and stop. Otherwise, let Y ⊆ X
be the closed set that was not burned, and U the open set that was
burned.

(5) Let d > 0 be the smallest distance from a valency-> 2 vertex in U to
Y . Observe that there are no chips on U at distance smaller than d to
Y .

(6) Let Z ⊆ X be the closed set of points at distance ≥ d to Y .
(7) Now let f be the rational function that is d on Z, 0 on Y , and linear

with slope 1 on all line segments connecting Z and Y .
(8) So ÷(f) is supported on the boundary of Z (where it has positive

coefficients) and the boundary of Y (where it has negative coefficients).
The coefficient of ÷(f) at a boundary point y of Y is the number of
edges emanating from y into U , hence at most the number of chips of
F at y since burning stopped at y.

(9) Hence D+÷(f) is effective and has its chips closer to q. Now go back
to step 2.

• This algorithm terminates, and the output has the properties above. (For
the last property: if Y did not have such a boundary point, it would not
burn!)

• Lemma: there is only one divisor linearly equivalent to a given D with the
properties above.

[Given two of them, say E and F , let f ∈M(X) be such that E+÷(f) =
F. Let Y be the set where f attains its minimal value; this is a closed
set. If q 6∈ Y , then, by the assumption on E, Y has a boundary point
y where E(y) is less than the number of edges emanating from y into
X \ Y . Along each of these edges the incoming slope of f is negative,
so F (x) = (÷f)(x) + E(x) < 0, a contradiction. Hence f is minimal at q.
By applying the same reasoning to −f , with the roles of F and E reversed,
f is also maximal at q. Hence f is constant.]

• Example: Prin0(X) of a circle X with base point q, considered as neutral
element of its group of rotations, is isomorphic to X via the map that sends
p to [p− q].

4. Riemann’s inequality

• In the algebro-geometric setting, we have r(D) ≥ deg(D)−g (the difference
is r(K −D) + 1 ≥ 0, where K is the canonical divisor).

• (Of course, this is only an interesting inequality if deg(D) ≥ g.)
• In particular, this means that given any effective divisor E of degree deg(D)−
g, then there exists a rational function f such that not only ÷(f) ≥ −D
but indeed ÷(f) ≥ −D + E. (Vanishing to the order e at a point p ∈ X
imposes at most e linearly independent conditions on |D|. If the number
of conditions does not exceed the dimension r(D) of this projective space,
then there exists a point with those conditions.)

• We will now prove the analogue for graphs.
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• Theorem: for a metric graph X of genus g, if D is any divisor with deg(D) ≥
g, and if E is any effective divisor of degree deg(D)−g, then D−E is linearly
equivalent to an effective divisor.
• In fact, we will prove the full Riemann-Roch theorem, following Matt

Baker’s blog. It says the following.
• Definition: let K be the divisor with K(x) = valency of x minus 2. Check

that deg(K) = 2g − 2.
• Definition: for D any divisor on X, let r(D) denote the maximal r ∈ Z≥−1

such that for each effective divisor E of degree r the divisor D − E is
equivalent to an effective divisor.
• Theorem (Riemann-Roch): r(D)− r(K −D) = deg(D)− g + 1.
• Proof from Baker’s blog. Every orientation O of X yields a divisor DO with
DO(x) =number of incoming edges at x-1. This has degree g − 1. If O′ is
the opposite orientation, then DO + DO′ = K.
• For a continuation see https://mattbakerblog.wordpress.com/2014/01/12/reduced-divisors-and-riemann-roch-for-graphs/

and start reading at Lemma 2. (Note that there, things are written down
for ordinary rather than metric graphs, but the proofs are the same.)
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