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Grassmannians of two-spaces

• In this section, based on work by Speyer and Sturmfels, we tropicalise

the variety X := Ĝ(2, n) ∩ T (n
2) with coordinates (pij)i<j defined by the

vanishing of the three-term Plücker polynomials

pijpkl − pikpjl + pilpjk

for i < j < k < l.
• Clearly, for w ∈ Trop(X) it is necessary that each minimum min{wij +
wkl, wik +wjl, wil +wjk} is attained at least twice. We will prove that this
also suffices, so that the Plücker polynomials form a tropical basis.
• A good source of tuples w satisfying the above is obtained by taking w = −d

where d is a tree metric. Up to the lineality space, these are all. Indeed:
consider d := −w + N(1, . . . , 1) where N is so large that d satisfies all
triangle inequalities. Then d satisfies the four-point condition, hence is a
tree metric. And the vector (1, . . . , 1) lies in the lineality space of X.
• So it suffices to prove that if w = −d where d is a tree metric corresponding

to the metric tree T and a labelling [n]→ T , then w = v(p) for some point
p ∈ X.
• Choose a root r on the interior of one of the edges e0, and add to the edge

lengths leading to leaves positive real numbers such that the path from r
to any of the leaves 1, . . . , n is equal to a fixed number W > 0. This is the
“balanced” case.
• For each edge e, let ue be the length of the path starting with e to any of

the leaves below it. (this doesn’t depend on the leaf). Thus the two edges
e leading to r have ue equal to W .
• Choose generic elements ce ∈ K of valuation 0. For each leaf i let qi be

the sum of the terms cet
−2ue ∈ K where e runs over the edges on the path

from i to r (inclusive).
• Now set pij := qi − qj ∈ K. The paths from i and j to r meet for the first

time at some vertex t. The contribution of the edges between r and t cancel
in the above expression. Consequently, by genericity of the coefficients, the
valuation of pij equals v(pij) = −2ue, where e is any of the two edges
leading down from t. And this equals wij = −dij .
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• The general, unbalanced case follows by acting with a suitable from Tn ⊆
T (n

2), (xi)i 7→ (xixj)i<j .

Tropical products of distance matrices

• Denote by � tropical matrix multiplication.
• Theorem: the set D := {D1 � · · · �Dk | k ∈ Z≥1, Di n× n-metric} is the

support of some finite polyhedral fan of dimension
(
n
2

)
.

• Interpretation of entry in the product at (i, j): first do a step in metric 1,
then in metric 2, etc., to get as efficiently as possible from i to j.
• Example for n = 3:
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• Finiteness: can bound k as follows. To go from i to j you will need never
use more than (n−1) of the metrics. Hence you can delete all but n2(n−1)
of the metrics, while the result stays the same. Hence the set in the theorem
does not change if we restrict k to be at most (or exactly) n2(n−1). Hence
D is the (union of) images of finitely many polyhedra under piecewise linear
maps, hence the support of some finite polyhedral complex.
• Lower bound on the dimension:

(
n
2

)
is the dimension of the cone of metric

matrices.
• So the upper bound remains to be proved.

First, take a D = (dij)ij where all triangle inequalities hold strictly
and all dij > 0 for i 6= j. Construct the skew-symmetric matrix X over
K := k((R)) (formal power series in t over k with arbitrary well-ordered
supports in R).

Then I −X is invertible with inverse I +X +X2 + . . . (for this series to
make sense we use dij > 0) for i 6= j. Set g := (I + X)(I −X)−1 (Cayley
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transform). This is orthogonal:

gT g = (I −X)−T (I +X)T (I +X)(I −X)−1

= (I +X)−1(I −X)(I +X)(I −X)−1.

Moreover, by the strict triangle inequalities, v(g) = D.
Hence the cone of distance matrices is contained in trop(On∩Tn×n) (the

latter set is closed, so don’t need strict ineqs).
Similarly, for k metric matrices D1, . . . , Dk with strict ineqs, construct

X1, . . . , Xk and g1, . . . , gk as above, except multiply the powers of tij by
suitable constants to achieve that v(g1 · · · gk) = D1 � · · · � Dk (no can-
cellation). Since On is closed under the ordinary matrix product, we find
D ⊆ trop(On ∩ Tn×n).

Now On is defined by
(
n+1
2

)
equations and hence has dimension at least(

n
2

)
by the principal ideal theorem. The tangent space at I has dimension

at most equal to
(
n
2

)
, hence On is smooth at I and the irreducible com-

ponent of On containing I has exactly that dimension. But then so do
all irreducible components of On: if h ∈ On, then left multiplication by h
yields an automorphism of On that maps the component containing I to
the component containing h (this is a general fact about algebraic groups
over algebraically closed fields: they are smooth and equidimensional).

It follows that dim trop(On ∩ Tn×n) = dimOn ∩ Tn×n =
(
n
2

)
, where the

first inequality follows from the structure theorem. This proves that D has
at most that dimension.
• We do not know whether D is pure, or whether trop(On ∩ Tn×n) is closed

under � (we used this only in a special case).
• Incidentally, On also has an interesting, (nontropical) application to the

extremal combinatorics of gossiping.

1. Tropicalising a linear space, bis

• Assume v(K) = R and k infinite. Let X ⊆ Kn be a linear space. We will
compute v(X) ⊆ Rn

∞.
• v(X) is closed under tropical addition: if a, b ∈ v(X) then we can pick a
λ ∈ K of valuation zero such that v(X) 3 v(a + λb) = v(a) ⊕ v(b). (For
the i-th entry, this is automatic if v(ai) 6= v(bi). If they’re equal, we should

pick λ such that 1+ λ̄bi/ai 6= 0 in k. This is where we use that k is infinite.)
• v(X) also contains (∞, . . . ,∞) and is closed under tropical scalar multi-

plication. Together, these three statements mean that they form a R∞-
subsemimodule of Rn

∞.
• Let x1, . . . , xN be the vectors in X of distinct, minimal nonempty supports

(sets of positions where they are nonzero). These are called the co-circuits
of the matroid defined by X.
• Theorem (Yu-Yuster): v(X) equals the R∞-subsemimodule M generated

by v(x1), . . . , v(xN ).
[⊇ follows from the above.
⊆: Prove by induction on the support of x ∈ X that v(x) ∈M . Suppose

that this holds for all vectors with support strictly contained in that of
x. Choose j such that the support S of xj is contained in that of x. We
want to choose λ ∈ K such that y := x − λxj ∈ X has strictly smaller
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support than x and moreover v(x) = v(y)⊕ (v(λ)�v(xj)). For this, choose
i ∈ S such that v(xi)− v((xj)i) is minimal and set λ := xi/(xj)i. Then the
support of y does not contain i, both v(y) and v(λxj) are componentwise
at least v(x), and where the first one is strictly larger than v(x), the second
one equals v(x). Hence v(x) = v(y)⊕ (v(λ)� v(xj)), as claimed.]
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