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Transversal intersections

• Definition: Two affine subspaces w+L1, w+L2 in Rn are said to intersect
em transversally at w if L1 + L2 = Rn.

Two polyhedral complexes Σ1,Σ2 in Rn are said to intersect transversally
at w ∈ |Σ1| ∩ |Σ2| if the affine spans of the unique cells σ1 ∈ Σ1, σ2 ∈ Σ2

having w in their relative interiors intersect transversally at w.
Two tropical varieties Trop(X),Trop(Y ) are said to intersect transver-

sally at w ∈ Trop(X)∩Trop(Y ) if there exist polyhedral complexes Σ1,Σ2

with |Σ1| = Trop(X) and |Σ2| = Trop(Y ) which intersect transversally at
w.

• Theorem: let X,Y ⊆ Tn closed subvarieties. If trop(X), trop(Y ) intersect
transversally at w ∈ Rn, then w ∈ trop(X ∩ Y ). In particular, if they
intersect transversally everywhere, then trop(X ∩ Y ) = trop(X)∩ trop(Y ).

(Note that ⊆ always holds!)
• Lemma: let I, J ⊆ K[x0, . . . , xn, y0, . . . , ym] homogeneous and w ∈ Rm+n+2.

If inwI is generated by I ′ := (inwI) ∩ k[x0, . . . , xn] and inwJ is generated
by J ′ := (inwJ) ∩ k[y0, . . . , ym], then inw(I + J) = inw(I) + inw(J).

[Note that ⊇ always holds. Hence for any u we have

inu(inw(I + J)) ⊇ inu(inw(I) + inw(J)) ⊇ inuinw(I) + inuinw(J).

If we can show that equality holds between the lhs and the rhs, then we
are done since then all relevant ideals have the same Hilbert function.

Note furthermore that inuinwI equals the ideal I ′′ generated by inu′(I ′),
where u′ is projection of u in Rn+1. Indeed, inuinwI ⊇ I ′′ and equality
holds by comparing Hilbert functions: inwI is the free k[y0, . . . , ym]-module
generated by I ′, and I ′′ is the free k[y0, . . . , ym]-module generated by inu′I ′.

Pick u such that both the ideal on the lhs above and the two ideals on
the rhs are monomial, and replace w by w+εu for small ε > 0. This reduces
the lemma to the case where inw(I + J), inw(I), inw(J) are monomial.

Now suppose that f ∈ Id, g ∈ Jd are such that inw(f + g) is a monomial
m = xαyβ not in inwI and not in inwJ . Hence neither inwf nor inwg
contains the monomial m, and their sets of monomials is equal (or else
we’d have inw(f + g) = inwf + inwg). Pick one of these monomials, say
m′ = xγyδ. Then there are f1 ∈ I and g1 ∈ J such that inwf1 is a monomial
xγ

′
dividing xγ and inwg1 is a monomial yδ

′
dividing yδ. Write

f = cxγ−γ
′
yδf1 + f2

where c is the coefficient of xγyδ in f , and similarly

g = dxγyδ−δ
′
g1 + g2.
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Then we have v(c + d) > v(c) = v(d), or else inw(f + g) would contain
a nonzero constant times the monomial xγyδ. Thus d = c(−1 + a) with
v(a) > 0.

Moreover, either inwf, inwg have a single term and trop(f2)(w) > trop(f)(w)
or else inwf2, inwg2 have the monomial m′ fewer than inwf .

Now compute

f + g = cxγ−γ
′
yδ−δ

′
(yδ

′
f1 − xγ

′
g1 + axγ

′
g1g1) + f2 + g2

= cxγ−γ
′
yδ−δ

′
((yδ

′
− g1)f1 + (f1 − xγ

′
)g1 + axγ

′
g1).

Set

f ′ := cxγ−γ
′
yδ−δ

′
(yδ

′
− g1)f1 + f2 ∈ I

g′ := cxγ−γ
′
yδ−δ

′
((f1 − xγ

′
)g1 + axγ

′
g1) + g2 ∈ J.

Then we have f + g = f ′ + g′ and either trop(f ′)(w) > trop(f)(w) or else
inwf

′ has one monomial less than inwf .
By iterating this construction, we get a sequence of pairs (f ′′, g′′) ∈ I×J

that add up to f + g, and in each step either the value of trop(f ′′)(w)
increases strictly or else it remains the same and the number of monomials
in inwf

′′ decreases strictly. Clearly there are infinitely many steps of the
first type. If the valuation happens to be discrete, then this contradicts
the fact that trop(f ′′)(w) ≤ trop(f + g)(w). In the general case, there is a
slightly more technical argument in the book.]
• Proof of the theorem: let Σ1,Σ2 be polyhedral complexes with support

trop(X) and trop(Y ), respectively, that intersect transversally at w, and
let σi ∈ Σ be the cells with w in their relative interiors. Their affine
spans are w + Li, where Li ⊆ Rn is a subspace spanned by its integral
points. Choose integral bases a1, . . . , ar ∈ Zn of L1∩L2 and extend to bases
a1, . . . , ar, ar+1, . . . , as ∈ Zn of L1 and a1, . . . , ar, as+1, . . . , an ∈ Zn of L2.
Let A : Zn → Zn be the injective group homomorphism sending ei to ai;
its image is a full-rank submodule of Zn, and the corresponding morphism
φ : Tn → Tn a finite morphism. Let X ′ := φ−1(X) and Y ′ := φ−1(Y )
be the pre-images. By last week’s work, trop(X) = trop(φ)trop(X ′) and
trop(Y ) = trop(φ)trop(Y ′), where trop(φ) is the bijective linear map with
matrix A. Moreover, we have X ′ ∩Y ′ = φ−1(X ∩Y ), hence trop(X ∩Y ) =
trop(φ)trop(X ′ ∩ Y ′). So it suffices to prove the theorem for X ′ and Y ′

instead of X and Y . Replace the latter by the former.
Then we have achieved that L1 = 〈e1, . . . , es〉 and L2 = 〈e1, . . . , er, er+1, . . . , en〉.

Then, by an earlier argument, inwI is homogeneous w.r.t. a Zs-grading,
hence it is generated by polynomials in the variables xs+1, . . . , xn. Simi-
larly, inwJ is generated by polynomials in the variables xr+1, . . . , xs. After
homogenising I ∩ K[x1, . . . , xn] using a variable xn+1 and letting I ′ be
the ideal that this generates in K[x0, . . . , xn+1], and homogenising J ∩
K[x1, . . . , xn] using a variable x0, and letting J ′ be the ideal that this
generates in K[x0, . . . , xn+1], we have that in(0,w,0)I

′ is generated by poly-
nomials in xs+1, . . . , xn+1 and in(0,w,0)J

′ is generated by polynomials in
x0, xr+1, . . . , ss. Hence we find

in(0,w,0)(I
′ + J ′) = in(0,w,0)I

′ + in(0,w,0)J
′
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by the lemma. Setting x0 = xn+1 = 1 we find

inw(I + J) = inwI + inwJ.

The two ideals on the left are proper ideals generated by polynomials in
disjoint sets of variables xs+1, . . . , xn and xr+1, . . . , xs. Picking points p ∈
(k∗)n−s satisfying the first set of equations and q ∈ (k∗)s−r satisfying the
second set of equations, we find that (1, q, p), where there are r ones, satisfies
both, so the sum is a proper ideal. Hence w ∈ trop(I + J).
• Example: X = V (x + y + z + 1) and Y = V (t−10x + t−1y + tz + 1) have

transversely intersecting tropical varieties. It follows that these polynomials
form a tropical basis for the ideal that they generate.

The four-point condition

• Definition: A finite metric is an n× n-matrix (dij) satisfying dij = dji ≥ 0
and dii = 0 and dij + djk ≥ dik.
• Example: Glue a finite number of positive-length closed intervals together,

and consider the result as an (infinite) metric space (X, δ) with shortest-
path metric. Given a labelling φ : {1, . . . , n} → X we can define dij :=
δ(φ(i), φ(j)). We say that (X, δ, φ) realises d.
• If X is a tree, then the dij satisfy the four-point condition: for any four

distinct i, j, k, l the maximum of {dij + dkl, dik + djl, dil + djk} is attained
at least twice.
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• Theorem: conversely, suppose that a finite metric satisfies the four-point
condition, then there is a unique metric tree realising it in the above sense
with the additional property that all leaves are labelled.

[The proof idea is this: imagine the tree we’re trying to find, and shorten
edges leading to leaves until one becomes a point. Then remove that label,
and proceed by induction.

The basis of the induction, n = 2, is immediate.
Suppose the statement is true for n− 1, set q := min{dkl + dlm − dkm |

k, l,m distinct}, and assume the minimum is attained in k, l,m.
Define eij := dij−q. This is still a finite metric and satisfies the triangle

inequality for k, l,m with equality. (Thanks to Arthur: to see that eij ≥ 0,
assume that dij < q and choose an arbitrary j′ 6= i, j. Then q ≤ dij +djj′−
dij′ < q+djj′−dij′ so dij′ > djj′ . But the converse also holds by symmetry
of the argument in i, j.) Moreover, e satisfies the four-point condition.

By induction there is a metric tree T ′ realising the finite metric e on

the labels 1, . . . , l̂, . . . , n. On the path from k to m in T , label the point at
distance ekl from k with l. This automatically has the right distance elm
to m in T ′, as well—and (for uniqueness) it is the only place in T ′ where
you can put l to match these distances.

We now show that eil is the distance from l to i in T ′ for all i 6= k,m,
as well. Consider the subtree of T ′ spanned by k, i, l,m. After removing
l, this tree splits into two or three connected components. Case 1: two
components, without loss of generality with k, i in the same component.
We know that the maximum of {eik + elm, eim + ekl, eil + ekm} is attained
at least twice. The first two numbers are honest distances in T ′, and the
second is larger than the first. Hence the last must equal the second, so
that we find

eim + ekl = eil + ekm = eil + ekl + elm

and hence eil = eim− elm, which is also the distance between i and l in T ′.
Case 2: three components. Suppose the maximum is attained by the

first two. Then in particular eim + ekl ≥ eil + ekm = eil + ekl + elm, so
eim ≥ eil + elm, and by the triangle inequality equality must hold, and
we’re back in the previous case.

Thus we have realised e by a tree T ′. Now realise d by growing a new
leaf edge leading to l of length q/2, and increasing the lengths of all leaf
edges by this same number. ]
• A version of this proof is called the neighbour joining algorithm in compu-

tational biology.


