TROPICAL GEOMETRY, LECTURE 10

JAN DRAISMA

THE STRUCTURE THEOREM

Last time: the fundamental theorem.

Notation: for a variety X defined over K and L a field extension, let X (L)
be its set of point with coordinates over L.

Consequence: the set v(X (L)) is the same, and equal to trop(X), for any
algebraically closed, non-trivially valued field extension L of an arbitrary
valued field K.

Stronger version: let K be a non-trivially valued, algebraically closed field,
and X C T" an irreducible subvariety defined over K. Then for each
w € Trop(X) N (v(K*)™) the set of p € X with v(p) = w is Zariski-dense
in X. We saw this for the hypersurface case (Kapranov’s theorem), and
the induction step that proved the fundamental theorem is consistent with
this.

Consequence: let ¢ : T™ — T™ be a torus homomorphism, let X C T
be a subvariety defined over K, and set Y := ¢(X). Then the linear map
trop(¢) : R™ — R™ maps trop(X) onto trop(Y).

[We have already seen (and used!) “into”. But now it also follows
like this: pick an algebraically closed, valued field extension L of K with
surjective valuation, so that trop(X) = v(X(L)). Then trop(¢)trop(X) C
v(6(X (L)) € v(Y (L)) = trop(¥).

For the converse, first reduce to the case where X is irreducible. Then
so is Y. For a point w € Trop(Y) the set of ¢ € Y(L) with v(q) = w is
dense. Hence it intersects ¢(X). (Indeed, the image of a variety under a
morphism is a “constructible set”: a finite union of locally closed subsets.
In particular, ¢(X) contains an open, dense subset of Y. Such a subset
intersects any dense set.)]

Example (Grassmannians of 2-spaces): Let V' be the subvariety of T (3)
with coordinates z;; = —xzj;,¢ # j given by the linear equations z;; +
Zjk + 2k = 0. (This is the image of the rational map from K™ that maps

(tl, e ,tm) to (wij = ti — tj)i’<j.)

Set X :=T"xV C 7m+(%) and consider the torus homomorphism ¢ :
7m+(%) - 7(%) that maps ((s1,...,5m), (Tij)ij) to (8i8;xi;)i;. The image
of ¢ is dense in the affine cone G(2,m) over the Grassmannian G(2,n), and
hence trop(G(2,m) N T(T;)) = trop(¢)trop(X). The right-hand side is the
image of R™ x trop(V') under the map (s,z) — (s; + s; + 245)ij-

More general example: if Y C T" obtained from X C T™ as the im-
age ¢(T™) - X, where ¢ : T™ — T" is a torus homomorphism and where
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the action is component-wise multiplication, then trop(Y) = trop(X) +
trop(¢)R™.

Theorem: (the structure theorem): The tropicalisation trop(X) of an irre-
ducible algebraic variety X C T7 of dimension d is the support of a pure,
d-dimensional, v(K*)-rational polyhedral complex, which is connected in
codimension one, and in which moreover all d-dimensional cells are given a
nonnegative integer as multiplicity in such a way that “balancing” holds.

e Pure means that all maximal cells have the same dimension d.
e Balancing means the following: suppose that 7 is a cell of dimension

d — 1, that g1,...,0; are the d-dimensional cells containing 7, and that
maq,...,my are their multiplicities. Translate such that 7 has 0 in its rel-
ative interior, and let L C R™ be the (d — 1)-dimensional subspace of R™
spanned by 7. Since 7 is v(K*)-rational, L is the span of the (saturated)
lattice M := L NZ". Similarly, we obtain rank-d lattices M, ..., M} con-
taining M for the o;. Each quotient M;/M = Z is a one-dimensional lattice,
and exactly one of its two generators has a representative v; € M; such that
ev; € o; for small € > 0. Then balancing says that

mivy + ...+ mgug € M.

Connected in codimension one means that for any two d-dimensional cells
0,0’ there is a sequence o = oy, ...,0, = o’ of maximal cells such that any
two consecutive cells have a (d — 1)-dimensional facet in common.

The construction of the multiplicities is somewhat technical, and so is the
proof of balancing. Let’s only discuss the simple hypersurface case, where
X CT" is the zero set of a single polynomial f.

[In this case, trop(X) is dual to the regular subdivision of the Newton
polytope of f with lifting function o — v(cy). Thus, the (n—1)-dimensional
cells of trop(X) correspond bijectively to edges in this decomposition. De-
fine their multiplicities as the lattice lengths of the corresponding edges
(number of lattice points minus one).

Now fix an (n — 2)-dimensional cell 7, and translate such that 7 has 0
in its relative interior. This 7 corresponds to a polygon P in the regular
subdivision. By a lattice automorphism we may transform the lattice M
corresponding to 7 into the lattice Z"~2 where the first two coordinates are
zero. This transforms P, which lives in the dual space, into a lattice polygon
with vertices in Z2, the annihilator of the Z"~2 corresponding to 7. Let
ai,...,ar € Z2 be the vertices of this polygon read off in counterclock-wise
order, so that f; := a;41 — a; are the vectors corresponding to edges of P.
The span of the corresponding (n — 1)-dimensional cell o; is the annihilator
fi+ in the dual Z". Write f; = m;f!, where f! = (a;,b;,0,...,0) € Z?
has coprime coordinates and where m; is the lattice length of f;, hence
the multiplicity of o;. Then, near 0, o; agrees with the cone spanned
by 7 and (—b;,a;,0,...,0). Hence we may take the representative v; :=
(=biya4,0,...,0). The fact that f1 + ...+ fr = 0 now translates into the
balancing condition that mivi + ...+ mpui € Z”_2.]

The connectedness is highly nontrivial, even if there is a relatively simple
reduction to the case of a curve in three-space. We omit the proof.

So we are left with proving that trop(X) is pure of dimension d if X is
irreducible (or just equidimensional) of dimension d. Last week we saw that
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all cells in the Grobner complex of I;,;,; have dimension at most d, when
regarded in R" ™! /R(1,...,1). Now we need to prove that the maximal cells
have exactly that dimension. We first prove a weaker statement: namely,
that if dim X > 0, then trop(X) has a positive dimensional cell.

Lemma: suppose that Y C T™ is a closed subvariety such that trop(Y) is a
finite subset of R™. Then Y has dimension 0, i.e., Y is a finite set of points.

[Induction on n. For n = 1 the statement is clear since if ¥ does not
have dimension zero, then Y = T and trop(Y) = R. If the statement holds
for n — 1 > 1, then consider a torus homomorphism % : 7% — T™~! such
that Z := ¢(Y) is closed and of the same dimension as Y. Then trop(Z) =
trop((Y)) = trop(¢)trop(Y) is finite, and hence dimY = dim Z = 0 by
the induction hypothesis.]

Lemma: let X C T™ be an irreducible subvariety with ideal I = Ix and
w € trop(X). Then dim V (in,I) = dim X =: d.

Last week we used only the inequality <, which does not need the irre-
ducibility of X. Let’s see in an example why we need irreducibility. Con-
sider the ideal I = (z+y+1)N{zx—t2,y—3t) = (x+y+1)(z—t?), (x +y+
1)(y — 3t)) and set X := Vpa(I). Then trop(X) is the union of the single
point (2,1) and the tropicalisation of a line. Now ingy 1)/ 2 (z — 1,y — 3),
and since this is a maximal ideal and (2,1) € trop(X), equality holds. So
V(ine,1y1) is just the single point (1,3).

[Proof of the lemma:

The ideal in,, I, is the image of in(g,w)Iproj under the map zg — 1. The
Krull dimension of K[P™"]/I;0; is d+1, hence so is (by the work of Chapter
2) the Krull dimension of k[P"]/in ) /proj-

But now we will need the more precise statement, namely, that all irre-
ducible components of V (in(g,u)Iproj) € AZ'H have dimension d + 1; here
we use irreducibility of X. (In Chapter 2, we were too lazy to go through
the proof of this statement.) By intersecting with the hyperplane zq = 1
we loose the components contained in the hyperplane xy = 0, and the re-
maining components have dimension one lower than d + 1, i.e., d (use the
Principle Ideal Theorem). Hence, Vin (in, Iog) is equidimensional of dimen-
sion d. But then so is Vipn (in,I), (which, by assumption, is not empty).
]

Proof of pureness 1:

Let 0 CR"® =2 R""1/R(1,...,1) be a maximal cell in the Grébner com-
plex of I;0;5. Set k := dim o and let w be in the relative interior of 0. After
a torus automorphism, we may assume that the affine span of o equals w+L
with L = (ey,...,e). Forallu € L we have in,in,I = ing e, ] = in,, if € >
0 is sufficiently small, so (as in one of last week’s proofs) in,, I is Z*-graded.
In particular, in,, I is generated by Laurent polynomials in the variables
Tht1,. .., Ty only, so V(in,I) equals T x Y for some (d — k)-dimensional
subvariety Y of T}~ * with defining ideal J = in,,J N K[z}, ..., 2.

We will argue that Y is, in fact, O-dimensional. First let v € R»~* C R"
be nonzero. By maximality of o, w + eu does not lie in trop(X) for any
€ > 0. Hence in,in,I = (1). But then already in,in, f = 1 for some Z*-
homogeneous element f € I, which then must lie in J. Hence in,J = (1)
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for all nonzero u. In other words, trop(Y’) = {0} (where we think of £ with
the trivial valuation) and hence Y is finite, hence d — k = 0. ]

Sketch of original proof due to Bieri-Groves: we know that, for X C T
irreducible of dimension d, trop(X) is a polyhedral complex of dimension at
most d. In the special case where X is a hypersurface, i.e., where n = d+1,
we know that it is pure of dimension d. In the general case, find a torus
homomorphism 7 : T — T+ such that Y := 7(X) still has dimension
d. Then trop(m)trop(X) = trop(Y), so in particular trop(X) must have
dimension at least d, hence equal to d. Moreover, suppose that trop(X) has
a maximal cell 7 of dimension e < d. Pick a point w in the relative interior
of that cell. For each cell o # 7, the linear span of w — ¢ has dimension at
most d + 1, so we can choose 7 such that ker trop() intersects it trivially,
and indeed such that this holds for all maximal cells ¢ # 7. This means
that trop(m)(w) & trop(m) (o) for all such o, so trop(m)7 is a maximal cell of
dimension < e < d in the tropicalisation of a hypersurface, a contradiction.

SOMETHING ABOUT EXERCISES

The first exercise was no problem to anyone.

The second exercise was harder; Arthur, presented his solution.

The last exercise was somewhat tedious, but led to the following beautiful
Grobner complex:
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NEW HOMEWORK, TO BE HANDED IN MONDAY 7 DECEMBER, 13:00

(1) (In this exercise you may use the programme gfan_groebnerfan.) Let A
be the skew-symmetric 6 X 6-matrix

0 a b

c d e

—a 0 f g h i

A -b —f (). j ko1
—-c —g —J 0 m o n

—-d —-h -k —-m 0 o

—e —i -l -n —o 0

Its determinant is the square of the following polynomial, called the Pfaffian
of A:

f = ehj—dij—egk+cik+dgl—chl+efm—bim+alm—df n+bhn—akn+cfo—bgo+ajo.
Determine:
(a) the lineality space of trop(V'(f)) (i.e., the intersection of the lineality
spaces of all cones); and
(b) one representative of each orbit of Sg on the maximal-dimensional
cones of trop(V'(f)).
(2) Exercise 13 from 3.7.
(3) Consider the rational map from T to T° defined by
r (z—tx— (t+1%),2—1),
where t € K has valuation 1. Let X be the Zariski-closure of the image of
this map.
(a) Determine v(X) C R? under the assumption that v(K*) = R.
(b) Draw the tropical variety of X.

(c) Verify balancing at each of the 0-dimensional cells of trop(X) (the
1-dimensional cells have multiplicity 1).



