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JAN DRAISMA

The structure theorem

• Last time: the fundamental theorem.
• Notation: for a variety X defined over K and L a field extension, let X(L)

be its set of point with coordinates over L.
• Consequence: the set v(X(L)) is the same, and equal to trop(X), for any

algebraically closed, non-trivially valued field extension L of an arbitrary
valued field K.
• Stronger version: let K be a non-trivially valued, algebraically closed field,

and X ⊆ Tn an irreducible subvariety defined over K. Then for each
w ∈ Trop(X) ∩ (v(K∗)n) the set of p ∈ X with v(p) = w is Zariski-dense
in X. We saw this for the hypersurface case (Kapranov’s theorem), and
the induction step that proved the fundamental theorem is consistent with
this.
• Consequence: let φ : Tn → Tm be a torus homomorphism, let X ⊆ Tn

be a subvariety defined over K, and set Y := φ(X). Then the linear map
trop(φ) : Rn → Rm maps trop(X) onto trop(Y ).

[We have already seen (and used!) “into”. But now it also follows
like this: pick an algebraically closed, valued field extension L of K with
surjective valuation, so that trop(X) = v(X(L)). Then trop(φ)trop(X) ⊆
v(φ(X(L))) ⊆ v(Y (L)) = trop(Y ).

For the converse, first reduce to the case where X is irreducible. Then
so is Y . For a point w ∈ Trop(Y ) the set of q ∈ Y (L) with v(q) = w is
dense. Hence it intersects φ(X). (Indeed, the image of a variety under a
morphism is a “constructible set”: a finite union of locally closed subsets.
In particular, φ(X) contains an open, dense subset of Y . Such a subset
intersects any dense set.)]

• Example (Grassmannians of 2-spaces): Let V be the subvariety of T (m
2 )

with coordinates xij = −xji, i 6= j given by the linear equations xij +
xjk + xki = 0. (This is the image of the rational map from Km that maps
(t1, . . . , tm) to (xij = ti − tj)i<j .)

Set X := Tm × V ⊆ Tm+(m
2 ) and consider the torus homomorphism φ :

Tm+(m
2 ) → T (m

2 ) that maps ((s1, . . . , sm), (xij)ij) to (sisjxij)ij . The image

of φ is dense in the affine cone Ĝ(2,m) over the Grassmannian G(2, n), and

hence trop(Ĝ(2,m) ∩ T (m
2 )) = trop(φ)trop(X). The right-hand side is the

image of Rm × trop(V ) under the map (s, x) 7→ (si + sj + xij)ij .
• More general example: if Y ⊆ Tn obtained from X ⊆ Tn as the im-

age φ(Tm) ·X, where φ : Tm → Tn is a torus homomorphism and where
1
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the action is component-wise multiplication, then trop(Y ) = trop(X) +
trop(φ)Rm.
• Theorem: (the structure theorem): The tropicalisation trop(X) of an irre-

ducible algebraic variety X ⊆ TnK of dimension d is the support of a pure,
d-dimensional, v(K∗)-rational polyhedral complex, which is connected in
codimension one, and in which moreover all d-dimensional cells are given a
nonnegative integer as multiplicity in such a way that “balancing” holds.
• Pure means that all maximal cells have the same dimension d.
• Balancing means the following: suppose that τ is a cell of dimension
d − 1, that σ1, . . . , σk are the d-dimensional cells containing τ , and that
m1, . . . ,mk are their multiplicities. Translate such that τ has 0 in its rel-
ative interior, and let L ⊆ Rn be the (d − 1)-dimensional subspace of Rn
spanned by τ . Since τ is v(K∗)-rational, L is the span of the (saturated)
lattice M := L ∩ Zn. Similarly, we obtain rank-d lattices M1, . . . ,Mk con-
taining M for the σi. Each quotient Mi/M ∼= Z is a one-dimensional lattice,
and exactly one of its two generators has a representative vi ∈Mi such that
εvi ∈ σi for small ε > 0. Then balancing says that

m1v1 + . . .+mkvk ∈M.

• Connected in codimension one means that for any two d-dimensional cells
σ, σ′ there is a sequence σ = σ0, . . . , σk = σ′ of maximal cells such that any
two consecutive cells have a (d− 1)-dimensional facet in common.
• The construction of the multiplicities is somewhat technical, and so is the

proof of balancing. Let’s only discuss the simple hypersurface case, where
X ⊆ Tn is the zero set of a single polynomial f .

[In this case, trop(X) is dual to the regular subdivision of the Newton
polytope of f with lifting function α 7→ v(cα). Thus, the (n−1)-dimensional
cells of trop(X) correspond bijectively to edges in this decomposition. De-
fine their multiplicities as the lattice lengths of the corresponding edges
(number of lattice points minus one).

Now fix an (n − 2)-dimensional cell τ , and translate such that τ has 0
in its relative interior. This τ corresponds to a polygon P in the regular
subdivision. By a lattice automorphism we may transform the lattice M
corresponding to τ into the lattice Zn−2 where the first two coordinates are
zero. This transforms P , which lives in the dual space, into a lattice polygon
with vertices in Z2, the annihilator of the Zn−2 corresponding to τ . Let
a1, . . . , ak ∈ Z2 be the vertices of this polygon read off in counterclock-wise
order, so that fi := ai+1 − ai are the vectors corresponding to edges of P .
The span of the corresponding (n−1)-dimensional cell σi is the annihilator
f⊥i in the dual Zn. Write fi = mif

′
i , where f ′i = (ai, bi, 0, . . . , 0) ∈ Z2

has coprime coordinates and where mi is the lattice length of fi, hence
the multiplicity of σi. Then, near 0, σi agrees with the cone spanned
by τ and (−bi, ai, 0, . . . , 0). Hence we may take the representative vi :=
(−bi, ai, 0, . . . , 0). The fact that f1 + . . . + fk = 0 now translates into the
balancing condition that m1v1 + . . .+mkvk ∈ Zn−2.]

• The connectedness is highly nontrivial, even if there is a relatively simple
reduction to the case of a curve in three-space. We omit the proof.

• So we are left with proving that trop(X) is pure of dimension d if X is
irreducible (or just equidimensional) of dimension d. Last week we saw that



TROPICAL GEOMETRY, LECTURE 10 3

all cells in the Gröbner complex of Iproj have dimension at most d, when
regarded in Rn+1/R(1, . . . , 1). Now we need to prove that the maximal cells
have exactly that dimension. We first prove a weaker statement: namely,
that if dimX > 0, then trop(X) has a positive dimensional cell.
• Lemma: suppose that Y ⊆ Tn is a closed subvariety such that trop(Y ) is a

finite subset of Rn. Then Y has dimension 0, i.e., Y is a finite set of points.
[Induction on n. For n = 1 the statement is clear since if Y does not

have dimension zero, then Y = T 1 and trop(Y ) = R. If the statement holds
for n − 1 ≥ 1, then consider a torus homomorphism ψ : Tn → Tn−1 such
that Z := ψ(Y ) is closed and of the same dimension as Y . Then trop(Z) =
trop(ψ(Y )) = trop(ψ)trop(Y ) is finite, and hence dimY = dimZ = 0 by
the induction hypothesis.]
• Lemma: let X ⊆ Tn be an irreducible subvariety with ideal I = IX and
w ∈ trop(X). Then dimV (inwI) = dimX =: d.
• Last week we used only the inequality ≤, which does not need the irre-

ducibility of X. Let’s see in an example why we need irreducibility. Con-
sider the ideal I = 〈x+y+1〉∩〈x− t2, y−3t〉 = 〈(x+y+1)(x− t2), (x+y+
1)(y − 3t)〉 and set X := VTn(I). Then trop(X) is the union of the single
point (2, 1) and the tropicalisation of a line. Now in(2,1)I ⊇ 〈x− 1, y − 3〉,
and since this is a maximal ideal and (2, 1) ∈ trop(X), equality holds. So
V (in(2,1)I) is just the single point (1, 3).

[Proof of the lemma:
The ideal inwIaff is the image of in(0,w)Iproj under the map x0 7→ 1. The

Krull dimension of K[Pn]/Iproj is d+1, hence so is (by the work of Chapter
2) the Krull dimension of k[Pn]/in(0,w)Iproj.

But now we will need the more precise statement, namely, that all irre-
ducible components of V (in(0,w)Iproj) ⊆ An+1

k have dimension d + 1; here
we use irreducibility of X. (In Chapter 2, we were too lazy to go through
the proof of this statement.) By intersecting with the hyperplane x0 = 1
we loose the components contained in the hyperplane x0 = 0, and the re-
maining components have dimension one lower than d + 1, i.e., d (use the
Principle Ideal Theorem). Hence, VAn(inwIaff) is equidimensional of dimen-
sion d. But then so is VTn(inwI), (which, by assumption, is not empty).
]

• Proof of pureness 1:
Let σ ⊆ Rn ∼= Rn+1/R(1, . . . , 1) be a maximal cell in the Gröbner com-

plex of Iproj. Set k := dimσ and let w be in the relative interior of σ. After
a torus automorphism, we may assume that the affine span of σ equals w+L
with L = 〈e1, . . . , ek〉. For all u ∈ L we have inuinwI = inw+εuI = inw if ε >
0 is sufficiently small, so (as in one of last week’s proofs) inwI is Zk-graded.
In particular, inwI is generated by Laurent polynomials in the variables
xk+1, . . . , xn only, so V (inwI) equals T kk × Y for some (d− k)-dimensional

subvariety Y of Tn−kk with defining ideal J := inwI ∩K[x±1
k+1, . . . , x

±1
n ].

We will argue that Y is, in fact, 0-dimensional. First let u ∈ Rn−k ⊆ Rn
be nonzero. By maximality of σ, w + εu does not lie in trop(X) for any
ε > 0. Hence inuinwI = 〈1〉. But then already inuinwf = 1 for some Zk-
homogeneous element f ∈ I, which then must lie in J . Hence inuJ = 〈1〉



4 JAN DRAISMA

for all nonzero u. In other words, trop(Y ) = {0} (where we think of k with
the trivial valuation) and hence Y is finite, hence d− k = 0. ]
• Sketch of original proof due to Bieri-Groves: we know that, for X ⊆ Tn

irreducible of dimension d, trop(X) is a polyhedral complex of dimension at
most d. In the special case where X is a hypersurface, i.e., where n = d+1,
we know that it is pure of dimension d. In the general case, find a torus
homomorphism π : Tn → T d+1 such that Y := π(X) still has dimension
d. Then trop(π)trop(X) = trop(Y ), so in particular trop(X) must have
dimension at least d, hence equal to d. Moreover, suppose that trop(X) has
a maximal cell τ of dimension e < d. Pick a point w in the relative interior
of that cell. For each cell σ 6= τ , the linear span of w− σ has dimension at
most d+ 1, so we can choose π such that ker trop(π) intersects it trivially,
and indeed such that this holds for all maximal cells σ 6= τ . This means
that trop(π)(w) 6∈ trop(π)(σ) for all such σ, so trop(π)τ is a maximal cell of
dimension ≤ e < d in the tropicalisation of a hypersurface, a contradiction.

Something about exercises

(1) The first exercise was no problem to anyone.
(2) The second exercise was harder; Arthur, presented his solution.
(3) The last exercise was somewhat tedious, but led to the following beautiful

Gröbner complex:
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New homework, to be handed in Monday 7 December, 13:00

(1) (In this exercise you may use the programme gfan_groebnerfan.) Let A
be the skew-symmetric 6× 6-matrix

A =


0 a b c d e
−a 0 f g h i
−b −f 0 j k l
−c −g −j 0 m n
−d −h −k −m 0 o
−e −i −l −n −o 0

 .
Its determinant is the square of the following polynomial, called the Pfaffian
of A:

f = ehj−dij−egk+cik+dgl−chl+efm−bim+alm−dfn+bhn−akn+cfo−bgo+ajo.
Determine:
(a) the lineality space of trop(V (f)) (i.e., the intersection of the lineality

spaces of all cones); and
(b) one representative of each orbit of S6 on the maximal-dimensional

cones of trop(V (f)).
(2) Exercise 13 from 3.7.
(3) Consider the rational map from T to T 3 defined by

x 7→ (x− t, x− (t+ t2), x− 1),

where t ∈ K has valuation 1. Let X be the Zariski-closure of the image of
this map.
(a) Determine v(X) ⊆ R3 under the assumption that v(K∗) = R.
(b) Draw the tropical variety of X.
(c) Verify balancing at each of the 0-dimensional cells of trop(X) (the

1-dimensional cells have multiplicity 1).


