TROPICAL GEOMETRY, LECTURE 10

JAN DRAISMA

THE STRUCTURE THEOREM

- Last time: the fundamental theorem.
- Notation: for a variety X defined over K and L a field extension, let X(L) be its set of point with coordinates over L.
- Consequence: the set v(X(L)) is the same, and equal to trop(X), for any algebraically closed, non-trivially valued field extension L of an arbitrary valued field K.
- Stronger version: let K be a non-trivially valued, algebraically closed field, and $X \subseteq T^n$ an irreducible subvariety defined over K. Then for each $w \in \text{Trop}(X) \cap (v(K^*)^n)$ the set of $p \in X$ with v(p) = w is Zariski-dense in X. We saw this for the hypersurface case (Kapranov's theorem), and the induction step that proved the fundamental theorem is consistent with this.
- Consequence: let $\phi: T^n \to T^m$ be a torus homomorphism, let $X \subseteq T^n$ be a subvariety defined over K, and set $Y := \overline{\phi(X)}$. Then the linear map $\operatorname{trop}(\phi): \mathbb{R}^n \to \mathbb{R}^m$ maps $\operatorname{trop}(X)$ onto $\operatorname{trop}(Y)$.

[We have already seen (and used!) "into". But now it also follows like this: pick an algebraically closed, valued field extension L of K with surjective valuation, so that $\operatorname{trop}(X) = v(X(L))$. Then $\operatorname{trop}(\phi)\operatorname{trop}(X) \subseteq v(\phi(X(L))) \subseteq v(Y(L)) = \operatorname{trop}(Y)$.

For the converse, first reduce to the case where X is irreducible. Then so is Y. For a point $w \in \operatorname{Trop}(Y)$ the set of $q \in Y(L)$ with v(q) = w is dense. Hence it intersects $\phi(X)$. (Indeed, the image of a variety under a morphism is a "constructible set": a finite union of locally closed subsets. In particular, $\phi(X)$ contains an open, dense subset of Y. Such a subset intersects any dense set.)]

- Example (Grassmannians of 2-spaces): Let V be the subvariety of $T^{\binom{m}{2}}$ with coordinates $x_{ij} = -x_{ji}, i \neq j$ given by the linear equations $x_{ij} + x_{jk} + x_{ki} = 0$. (This is the image of the rational map from K^m that maps (t_1, \ldots, t_m) to $(x_{ij} = t_i t_j)_{i < j}$.)
 - (t_1, \ldots, t_m) to $(x_{ij} = t_i t_j)_{i < j}$.) Set $X := T^m \times V \subseteq T^{m+\binom{m}{2}}$ and consider the torus homomorphism ϕ : $T^{m+\binom{m}{2}} \to T^{\binom{m}{2}}$ that maps $((s_1, \ldots, s_m), (x_{ij})_{ij})$ to $(s_i s_j x_{ij})_{ij}$. The image of ϕ is dense in the affine cone $\widehat{G(2, m)}$ over the Grassmannian G(2, n), and hence $\widehat{trop}(\widehat{G(2, m)} \cap T^{\binom{m}{2}}) = \operatorname{trop}(\phi)\operatorname{trop}(X)$. The right-hand side is the image of $\mathbb{R}^m \times \operatorname{trop}(V)$ under the map $(s, x) \mapsto (s_i + s_j + x_{ij})_{ij}$.
- More general example: if $Y \subseteq T^n$ obtained from $X \subseteq T^n$ as the image $\overline{\phi(T^m) \cdot X}$, where $\phi: T^m \to T^n$ is a torus homomorphism and where

the action is component-wise multiplication, then $\operatorname{trop}(Y) = \operatorname{trop}(X) + \operatorname{trop}(\phi)\mathbb{R}^m$.

- Theorem: (the *structure theorem*): The tropicalisation $\operatorname{trop}(X)$ of an irreducible algebraic variety $X \subseteq T_K^n$ of dimension d is the support of a pure, d-dimensional, $v(K^*)$ -rational polyhedral complex, which is connected in codimension one, and in which moreover all d-dimensional cells are given a nonnegative integer as multiplicity in such a way that "balancing" holds.
- Pure means that all maximal cells have the same dimension d.
- Balancing means the following: suppose that τ is a cell of dimension d-1, that σ_1,\ldots,σ_k are the d-dimensional cells containing τ , and that m_1,\ldots,m_k are their multiplicities. Translate such that τ has 0 in its relative interior, and let $L\subseteq\mathbb{R}^n$ be the (d-1)-dimensional subspace of \mathbb{R}^n spanned by τ . Since τ is $v(K^*)$ -rational, L is the span of the (saturated) lattice $M:=L\cap\mathbb{Z}^n$. Similarly, we obtain rank-d lattices M_1,\ldots,M_k containing M for the σ_i . Each quotient $M_i/M\cong\mathbb{Z}$ is a one-dimensional lattice, and exactly one of its two generators has a representative $v_i\in M_i$ such that $\epsilon v_i\in\sigma_i$ for small $\epsilon>0$. Then balancing says that

$$m_1v_1 + \ldots + m_kv_k \in M$$
.

- Connected in codimension one means that for any two d-dimensional cells σ, σ' there is a sequence $\sigma = \sigma_0, \ldots, \sigma_k = \sigma'$ of maximal cells such that any two consecutive cells have a (d-1)-dimensional facet in common.
- The construction of the multiplicities is somewhat technical, and so is the proof of balancing. Let's only discuss the simple hypersurface case, where $X \subseteq T^n$ is the zero set of a single polynomial f.

[In this case, $\operatorname{trop}(X)$ is dual to the regular subdivision of the Newton polytope of f with lifting function $\alpha \mapsto v(c_{\alpha})$. Thus, the (n-1)-dimensional cells of $\operatorname{trop}(X)$ correspond bijectively to edges in this decomposition. Define their multiplicities as the lattice lengths of the corresponding edges (number of lattice points minus one).

Now fix an (n-2)-dimensional cell τ , and translate such that τ has 0 in its relative interior. This τ corresponds to a polygon P in the regular subdivision. By a lattice automorphism we may transform the lattice M corresponding to τ into the lattice \mathbb{Z}^{n-2} where the first two coordinates are zero. This transforms P, which lives in the dual space, into a lattice polygon with vertices in \mathbb{Z}^2 , the annihilator of the \mathbb{Z}^{n-2} corresponding to τ . Let $a_1, \ldots, a_k \in \mathbb{Z}^2$ be the vertices of this polygon read off in counterclock-wise order, so that $f_i := a_{i+1} - a_i$ are the vectors corresponding to edges of P. The span of the corresponding (n-1)-dimensional cell σ_i is the annihilator f_i^{\perp} in the dual \mathbb{Z}^n . Write $f_i = m_i f_i'$, where $f_i' = (a_i, b_i, 0, \ldots, 0) \in \mathbb{Z}^2$ has coprime coordinates and where m_i is the lattice length of f_i , hence the multiplicity of σ_i . Then, near 0, σ_i agrees with the cone spanned by τ and $(-b_i, a_i, 0, \ldots, 0)$. Hence we may take the representative $v_i := (-b_i, a_i, 0, \ldots, 0)$. The fact that $f_1 + \ldots + f_k = 0$ now translates into the balancing condition that $m_1 v_1 + \ldots + m_k v_k \in \mathbb{Z}^{n-2}$.]

- The connectedness is highly nontrivial, even if there is a relatively simple reduction to the case of a curve in three-space. We omit the proof.
- So we are left with proving that trop(X) is pure of dimension d if X is irreducible (or just equidimensional) of dimension d. Last week we saw that

all cells in the Gröbner complex of I_{proj} have dimension at most d, when regarded in $\mathbb{R}^{n+1}/\mathbb{R}(1,\ldots,1)$. Now we need to prove that the maximal cells have exactly that dimension. We first prove a weaker statement: namely, that if dim X > 0, then trop(X) has a positive dimensional cell.

- Lemma: suppose that $Y \subseteq T^n$ is a closed subvariety such that $\operatorname{trop}(Y)$ is a finite subset of \mathbb{R}^n . Then Y has dimension 0, i.e., Y is a finite set of points. [Induction on n. For n=1 the statement is clear since if Y does not have dimension zero, then $Y=T^1$ and $\operatorname{trop}(Y)=\mathbb{R}$. If the statement holds for $n-1\geq 1$, then consider a torus homomorphism $\psi:T^n\to T^{n-1}$ such that $Z:=\psi(Y)$ is closed and of the same dimension as Y. Then $\operatorname{trop}(Z)=\operatorname{trop}(\psi(Y))=\operatorname{trop}(\psi)\operatorname{trop}(Y)$ is finite, and hence $\dim Y=\dim Z=0$ by the induction hypothesis.]
- Lemma: let $X \subseteq T^n$ be an irreducible subvariety with ideal $I = I_X$ and $w \in \text{trop}(X)$. Then $\dim V(\text{in}_w I) = \dim X =: d$.
- Last week we used only the inequality \leq , which does not need the irreducibility of X. Let's see in an example why we need irreducibility. Consider the ideal $I = \langle x+y+1 \rangle \cap \langle x-t^2, y-3t \rangle = \langle (x+y+1)(x-t^2), (x+y+1)(y-3t) \rangle$ and set $X := V_{T^n}(I)$. Then $\operatorname{trop}(X)$ is the union of the single point (2,1) and the tropicalisation of a line. Now $\operatorname{in}_{(2,1)}I \supseteq \langle x-1, y-3 \rangle$, and since this is a maximal ideal and $(2,1) \in \operatorname{trop}(X)$, equality holds. So $V(\operatorname{in}_{(2,1)}I)$ is just the single point (1,3).

[Proof of the lemma:

The ideal $\operatorname{in}_w I_{\operatorname{aff}}$ is the image of $\operatorname{in}_{(0,w)} I_{\operatorname{proj}}$ under the map $x_0 \mapsto 1$. The Krull dimension of $K[P^n]/I_{\operatorname{proj}}$ is d+1, hence so is (by the work of Chapter 2) the Krull dimension of $k[P^n]/\operatorname{in}_{(0,w)} I_{\operatorname{proj}}$.

But now we will need the more precise statement, namely, that all irreducible components of $V(\operatorname{in}_{(0,w)}I_{\operatorname{proj}})\subseteq \mathbb{A}^{n+1}_k$ have dimension d+1; here we use irreducibility of X. (In Chapter 2, we were too lazy to go through the proof of this statement.) By intersecting with the hyperplane $x_0=1$ we loose the components contained in the hyperplane $x_0=0$, and the remaining components have dimension one lower than d+1, i.e., d (use the Principle Ideal Theorem). Hence, $V_{\mathbb{A}^n}(\operatorname{in}_w I_{\operatorname{aff}})$ is equidimensional of dimension d. But then so is $V_{T^n}(\operatorname{in}_w I)$, (which, by assumption, is not empty).

• Proof of pureness 1:

Let $\sigma \subseteq \mathbb{R}^n \cong \mathbb{R}^{n+1}/\mathbb{R}(1,\ldots,1)$ be a maximal cell in the Gröbner complex of I_{proj} . Set $k := \dim \sigma$ and let w be in the relative interior of σ . After a torus automorphism, we may assume that the affine span of σ equals w+L with $L = \langle e_1, \ldots, e_k \rangle$. For all $u \in L$ we have $\text{in}_u \text{in}_w I = \text{in}_{w+\epsilon u} I = \text{in}_w$ if $\epsilon > 0$ is sufficiently small, so (as in one of last week's proofs) $\text{in}_w I$ is \mathbb{Z}^k -graded. In particular, $\text{in}_w I$ is generated by Laurent polynomials in the variables x_{k+1}, \ldots, x_n only, so $V(\text{in}_w I)$ equals $T_k^k \times Y$ for some (d-k)-dimensional subvariety Y of T_k^{n-k} with defining ideal $J := \text{in}_w I \cap K[x_{k+1}^{\pm 1}, \ldots, x_n^{\pm 1}]$.

We will argue that Y is, in fact, 0-dimensional. First let $u \in \mathbb{R}^{n-k} \subseteq \mathbb{R}^n$ be nonzero. By maximality of σ , $w + \epsilon u$ does not lie in $\operatorname{trop}(X)$ for any $\epsilon > 0$. Hence $\operatorname{in}_u \operatorname{in}_w I = \langle 1 \rangle$. But then already $\operatorname{in}_u \operatorname{in}_w f = 1$ for some \mathbb{Z}^k -homogeneous element $f \in I$, which then must lie in J. Hence $\operatorname{in}_u J = \langle 1 \rangle$

- for all nonzero u. In other words, $\operatorname{trop}(Y) = \{0\}$ (where we think of k with the trivial valuation) and hence Y is finite, hence d k = 0.
- Sketch of original proof due to Bieri-Groves: we know that, for $X \subseteq T^n$ irreducible of dimension d, $\operatorname{trop}(X)$ is a polyhedral complex of dimension at most d. In the special case where X is a hypersurface, i.e., where n=d+1, we know that it is pure of dimension d. In the general case, find a torus homomorphism $\pi:T^n\to T^{d+1}$ such that $Y:=\overline{\pi(X)}$ still has dimension d. Then $\operatorname{trop}(\pi)\operatorname{trop}(X)=\operatorname{trop}(Y)$, so in particular $\operatorname{trop}(X)$ must have dimension at least d, hence equal to d. Moreover, suppose that $\operatorname{trop}(X)$ has a maximal cell τ of dimension e< d. Pick a point w in the relative interior of that cell. For each cell $\sigma\neq\tau$, the linear span of $w-\sigma$ has dimension at most d+1, so we can choose π such that $\operatorname{ker}\operatorname{trop}(\pi)$ intersects it trivially, and indeed such that this holds for all maximal cells $\sigma\neq\tau$. This means that $\operatorname{trop}(\pi)(w)\not\in\operatorname{trop}(\pi)(\sigma)$ for all such σ , so $\operatorname{trop}(\pi)\tau$ is a maximal cell of dimension $\leq e< d$ in the tropicalisation of a hypersurface, a contradiction.

SOMETHING ABOUT EXERCISES

- (1) The first exercise was no problem to anyone.
- (2) The second exercise was harder; Arthur, presented his solution.
- (3) The last exercise was somewhat tedious, but led to the following beautiful Gröbner complex:

NEW HOMEWORK, TO BE HANDED IN MONDAY 7 DECEMBER, 13:00

(1) (In this exercise you may use the programme gfan_groebnerfan.) Let A be the skew-symmetric 6×6 -matrix

$$A = \begin{bmatrix} 0 & a & b & c & d & e \\ -a & 0 & f & g & h & i \\ -b & -f & 0 & j & k & l \\ -c & -g & -j & 0 & m & n \\ -d & -h & -k & -m & 0 & o \\ -e & -i & -l & -n & -o & 0 \end{bmatrix}.$$

Its determinant is the square of the following polynomial, called the Pfaffian of A:

f=ehj-dij-egk+cik+dgl-chl+efm-bim+alm-dfn+bhn-akn+cfo-bgo+ajo.

Determine

- (a) the lineality space of $\operatorname{trop}(V(f))$ (i.e., the intersection of the lineality spaces of all cones); and
- (b) one representative of each orbit of S_6 on the maximal-dimensional cones of $\operatorname{trop}(V(f))$.
- (2) Exercise 13 from 3.7.
- (3) Consider the rational map from T to T^3 defined by

$$x \mapsto (x - t, x - (t + t^2), x - 1),$$

where $t \in K$ has valuation 1. Let X be the Zariski-closure of the image of this map.

- (a) Determine $v(X) \subseteq \mathbb{R}^3$ under the assumption that $v(K^*) = \mathbb{R}$.
- (b) Draw the tropical variety of X.
- (c) Verify balancing at each of the 0-dimensional cells of trop(X) (the 1-dimensional cells have multiplicity 1).