
TROPICAL GEOMETRY, LECTURE 1

JAN DRAISMA

1. Some tropical arithmetic

• The tropical semifield is R∞ := R∪{∞} equipped with ⊕ and � defined by
a⊕ b := min{a, b} and a� b := a+ b. Following the convention for classical
operations, � takes priority over ⊕, so a⊕ b� c := a⊕ (b� c).
• ⊕ is commutative, associative, with neutral element ∞; � is commuta-

tive, associative, with neutral element 0; and � distributes over ⊕. These
properties axiomatise a semiring. Here we have a semifield: each non-zero
element (i.e., each element a 6= ∞) has a multiplicative inverse (namely,
−a).
• but ⊕ does not have inverses, so not a ring!
• Arithmetic operations such as scalar times a vector, sum of vectors, matrix

products have tropical analogues: replace plus by ⊕ and times by �.
• We will follow [] in often writing classical expressions between double quota-

tion marks to indicate that the operations should be interpreted tropically.
So “1 + 3x3” = 1⊕ (3� x� x� x).
• Example: draw the “linear span” {“a(0, 0) + b(2, 1)” | a, b ∈ R∞} ⊆ R2

∞.
• Example: Let D ∈ [0,∞]n×n with zeroes on the diagonal. Then “Dn−1”

records the shortest-path lengths between vertices in the graph where the
length of the edge from i to j is dij .
• Remark: If we consider, instead, the matrix A = (εdij ) where ε is a variable,

and compute the ordinary n-th power An of A, then the lowest exponent
of ε appearing in its (i, j)-entry is the corresponding entry of “Dn”.

2. Tropical univariate polynomials

• Polynomials f = “
∑d

i=0 cix
i” (finitely many terms with ci 6= ∞) and

g = “
∑e

j=0 djx
j” are added as

“f + g” = f ⊕ g = “
∑
i

(ci + di)x
i”

and multiplied as

“fg” = f � g = “
∑
k

(
∑

i+j=k

cidj)x
k”.

They form a semiring (R∞-semialgebra) R∞[x].
• Note that f defines a function R∞ → R∞ sending a to mini(ci + ia). This

function, being the minimum of linear affine-functions, is concave.
• Example: f := “(x + 2)3” = “(0x + 2)3” = “(x2 + 2x + 4)(x + 2)” =

“x3 + 2x2 + 4x+ 6”.
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• On the other hand, for each a ∈ R∞, we have (a ⊕ 2)�3 = min{a + a +
a, 2 + 2 + 2} = “a3 + 6”. So the polynomials f and g := “x3 + 6” define
the same function R∞ → R∞. We will mostly be interested only in the
function that a polynomial defines.

Proposition 2.1. Every continuous function f : R∞ → R∞ that is concave and
linear with integral slopes at all but finitely many points comes from some tropical
polynomial in R∞[x]. Moreover, there is a unique such polynomial of the form

“c
∏d

i=1(x+ bi)”.

Proof. Let the distinct slopes of f , from left to right, be d1, d2, . . . , dk ∈ Z, and let
a1 < . . . < ak−1 <∞ be the points in R where the slope changes. As f is concave,
we have d1 > d2 > . . . > dk. As it extends to all of R∞ we must have dk ≥ 0. Set
ei := di − di+1 for i = 1, . . . , k − 1, so that d := d1 = e1 + . . . + ek−1 + dk. Then
the function f agrees with that determined by the polynomial

“cxdk

k−1∏
i=1

(x+ ai)
ei”

for suitable c ∈ R. For uniqueness, observe that the ai and c are uniquely deter-
mined by the graph of f . �

We will call the ai the roots of (all tropical polynomials representing) f and the
ei their multiplicities. This terminology is justified by a close relation to roots of
ordinary polynomials, discussed in the next section.

3. Valued fields

Definition 3.1. Let K be a field. Then a function v : K → R∞ is a valuation if
v−1(∞) = {0} and v(a+ b) ≥ min{v(a), v(b)} and v(ab) = v(a) + v(b).

Example 3.2. • LetK = C((t)), the field of Laurent series c :=
∑

i∈Z≥N
cit

i,

where we allow N to be any integer, and set v(c) := min{i | ci 6= 0}.
• Let K = Q and set v(m/n) :=the number of factors 3 in m minus the

number of factors 3 in n. This is the 3-adic valuation. Similarly with other
primes p.

• Let K be arbitrary and set v(c) = 0 for c 6= 0 and v(0) = ∞; the trivial
valuation.

Lemma 3.3. v(1) = v(−1) = 0 and v(a) = v(−a) and v(a) < v(b) ⇒ v(a + b) =
v(a).

Proof. v(1) = v(1 · 1) = v(1) + v(1) proves the first; and 0 = v(1) = v((−1)2) =
v(−1) + v(−1) the second. For the last, note that v(a + b) > v(a) would lead to
v(a) = v((a+ b)− b) ≥ min{v(a+ b), v(b)} > v(a). �

Definition 3.4. Given p ∈ K[x], p = c0 + c1x + · · · + cdx
d, define trop(p) :=

“v(c0) + v(c1)x+ · · ·+ v(cd)xd” ∈ R∞[x], the tropicalisation of p.

Proposition 3.5 (Newton). Suppose that p factors completely over K, so that
it has roots a1, . . . , ad, listed with multiplicities. Then the roots of trop(p) are
v(a1), . . . , v(ad), listed with multiplicities.

This uses the following lemma, which says that trop yields a multiplicative map
from polynomials to functions R∞ → R∞ (but not to R∞[x]).
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Lemma 3.6 (Gauss). For p, q ∈ K[x] the tropical polynomials trop(pq), trop(p)�
trop(q) ∈ R∞[x] define the same functions R∞ → R∞.

Proof. Write p = p0 + · · · + pdx
d and q = q0 + · · · qexe. Then, at a fixed x ∈ R∞,

the k-th term of trop(pq) is (in classical notation)

v(
∑

i+j=k

piqj) + kx ≥ min
i+j=k

v(piqj) + kx = min
i+j=k

(v(pi) + ix) + (v(qj) + jx),

which is at least

min
i

(v(pi) + ix) + min
j

(v(qj) + jx) = trop(p)(x)� trop(q)(x).

This shows one inequality. For the opposite, we need to show (still, for a fixed
x ∈ R∞) that there is a k for which the inequalities are equalities. Take i0 minimal
where mini(v(pi)+ix) is attained and j0 minimal where minj(v(qj)+jx) is attained
and set k := i0 + j0. For (i, j) 6= (i0, j0) with i + j = k we have either i < i0 or
j < j0. In either case we have

v(piqj) + kx = v(pi) + ix+ v(qj) + jx > v(pi0) + i0x+ v(qj0) + j0x = v(pi0qj0) + kx

so v(piqj) > v(pi0qj0). Then, by Lemma 3.3 above, it follows that the k-th term in
trop(pq) equals

v(pi0qj0) + kx = trop(p)(x) + trop(q)(x).

�

Proof of Newton’s proposition. By Gauss’s lemma, the proposition reduces to the
case of linear polynomials p = x − a. Now trop(p) = x ⊕ v(a), which defines the
piecewise linear function that equals x for x ≤ v(a) and v(a) for x ≥ v(a). �

4. Tropical plane curves

• Let f = “
∑

(i,j)∈A cijx
iyj” ∈ R∞[x, y] where A ⊆ Z2

≥0 is a finite set of

exponent pairs and cij 6=∞ for all (i, j) ∈ A.
• This defines a function R2

∞ → R∞ given by

(x, y) 7→ min
(i,j)∈A

(cij + ix+ jy).

This function is continuous, concave, piecewise linear with finitely many
linear pieces, where it has integral slopes.

• Like in the univariate case, every function with these properties is deter-
mined by some bivariate tropical polynomial. (“Unique factorisation” does
not hold, though.)

• Evaluating f at a point (x, y) corresponds to solving a linear program, as
follows. Let A′ ⊆ R3 be the set of the points (i, j, cij) with (i, j) ∈ A, so
that f(x, y) = mina∈A′(x, y, 1) · a. Since the function a 7→ (x, y, 1) · a is
linear, the minimum remains the same if we replace the domain A′ by its
convex hull P . The subset of P where the minimum is attained will be
either a vertex, or an edge, or a two-dimensional polygon. Since the last
coordinate of the linear function is positive, this minimising face will be
“visible from below”.



4 JAN DRAISMA

• We now come to a notion whose higher-dimensional generalisation will be
one of the most important notions in this course:

V (f) := {(x, y) ∈ R∞ | f is either infinite or nonlinear at (x, y)} ⊆ R2
∞

is the tropical curve defined by f . Let’s not worry too much about ∞ at
this point, and just look at (x, y) ∈ R.
• Example: f = “2 + 0x+ 1y”.
• Example: f = “2 + 1x+ 3x2 + 1y + 0xy + 2y2”.
• Higher-degree examples are best understood through the linear program-

ming interpretation above: if the minimising face is a vertex, then f is
locally linear near (x, y). However, if it is an edge or even a polygon, i.e.,
if there are at least two terms in the definition of f where the minimum is
attained, then f is not locally linear near (x, y).
• The edges of P visible from below correspond to pairs (i, j) 6= (i′, j′) with

the property that there exist (x, y) ∈ R2 such that cij + ix + jy = ci′j′ +
i′x+ j′y < ck,l + kx+ ly for all (k, l) ∈ A \ {(i, j), (i′, j′)}. The set of such
(x, y) forms an open interval in R2.
• The edges of P seen from below project down into the convex hull of A,

which is called the Newton polygon of f . They give a subdivision of that
polygon into polygons. This subdivision is dual to V (f) in the following
sense:
(1) edges of the subdivision correspond bijectively to line segments of

V (f);
(2) the segment is perpendicular to the edge;
(3) in this correspondence, boundary edges of the subdivision correspond

to infinite rays of V (f);
(4) polygons in the subdivision correspond to vertices in V (f), i.e., points

where several edges meet;
(5) vertices in the subdivision correspond to connected components of the

complement of V (f).
• We equip the edges (and rays) of V (f) with positive integral weights, equal

to the lattice length of the corresponding edge in the dual subdivision. This
is the number of integral points on it minus one. [More generally, if ` is a
finite line segment in Rn with rational slope, then its lattice length is defined
as follows: pick a vector v in Zn parallel to ` with gcd of its coordinates 1
(i.e., a primitive vector). Then the lattice length of ` is the ordinary length
of ` length divided by the ordinary length ||v||.]
• Thus V (f) ∩ R2 is a finite, one-dimensional polyhedral complex with ra-

tional slopes. Moreover, it satisfies an interesting balancing property, as
follows. Pick a vertex of V (f), corresponding to a polygon Q in the sub-
division. In the directions of each of its line segments, choose a primitive
vector, say v1, . . . , vk ∈ Z2 in counterclockwise order. Let m1, . . . ,mk be
the multiplicities: the lattice lengths of the corresponding edges of Q. Then∑

imivi = 0. Indeed, rotating each vi counterclockwise by 90 degrees, this
sum just corresponds to the sum of the vectors along the edges of Q!.


