TROPICAL GEOMETRY, LECTURE 1

JAN DRAISMA

1. SOME TROPICAL ARITHMETIC

The tropical semifield is Ry := RU{o0} equipped with @ and ® defined by
a®b:=min{a,b} and a ®b := a+b. Following the convention for classical
operations, ® takes priority over @, so a® b c:=a® (b O ¢).

@ is commutative, associative, with neutral element oco; ® is commuta-
tive, associative, with neutral element 0; and ©® distributes over &. These
properties axiomatise a semiring. Here we have a semifield: each non-zero
element (i.e., each element a # oo) has a multiplicative inverse (namely,
—a).

e but & does not have inverses, so not a ring!

e Arithmetic operations such as scalar times a vector, sum of vectors, matrix
products have tropical analogues: replace plus by @ and times by ®.

We will follow [] in often writing classical expressions between double quota-
tion marks to indicate that the operations should be interpreted tropically.
So “14+32" =12Bor0r06 ).

e Example: draw the “linear span” {“a(0,0) + b(2,1)” | a,b € Ry} C RZ.

e Example: Let D € [0,00]"*" with zeroes on the diagonal. Then “D"~1”
records the shortest-path lengths between vertices in the graph where the
length of the edge from i to j is d;;.

Remark: If we consider, instead, the matrix A = (e%7) where € is a variable,
and compute the ordinary n-th power A™ of A, then the lowest exponent
of € appearing in its (i, j)-entry is the corresponding entry of “D™”.

2. TROPICAL UNIVARIATE POLYNOMIALS

Polynomials f = “ Z?:o c;x? (finitely many terms with ¢; # oo) and

g="“Y5_dja’” are added as

ccf_|_gvv _ f@g: “Z(Ci—kdi)l‘i”

K2

and multiplied as

ot =fog=3 (> edy)at,

k iti=k

They form a semiring (R..-semialgebra) R [z].

Note that f defines a function Ry, — Ry, sending a to min;(¢; + éa). This
function, being the minimum of linear affine-functions, is concave.
Example: f := “(z +2)% = “(0z + 2)3” = “(2%2 + 2z + 4)(x + 2)” =
“rd 4222 + 42 +67.
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e On the other hand, for each a € R, we have (a ® 2)®3 = min{a + a +
a,2 +2+2} = “a®+6”. So the polynomials f and g := “z3 + 6” define
the same function Ry — Ry. We will mostly be interested only in the
function that a polynomial defines.

Proposition 2.1. Fvery continuous function f : Ry, — Ry that is concave and
linear with integral slopes at all but finitely many points comes from some tropical
polynomial in Ro[x]. Moreover, there is a unique such polynomial of the form
«“ d A\
clliq(x + ;).

Proof. Let the distinct slopes of f, from left to right, be di,ds,...,d; € Z, and let
a1 < ...<ag—1 < oo be the points in R where the slope changes. As f is concave,
we have di > dy > ... > dj. As it extends to all of Ry, we must have di > 0. Set
e, :=d; —diq1 fori=1,...,k—1,sothat d :=d; =e; +...+ex_1 +dg. Then
the function f agrees with that determined by the polynomial

k-1

“eqde H (x4 a;)%”

i=1
for suitable ¢ € R. For uniqueness, observe that the a; and ¢ are uniquely deter-
mined by the graph of f. O

We will call the a; the roots of (all tropical polynomials representing) f and the
e; their multiplicities. This terminology is justified by a close relation to roots of
ordinary polynomials, discussed in the next section.

3. VALUED FIELDS

Definition 3.1. Let K be a field. Then a function v : K — R, is a valuation if
v~ (o0) = {0} and v(a + b) > min{v(a),v(b)} and v(ab) = v(a) + v(b).

Example 3.2. e Let K = C((t)), the field of Laurent series c := > _, .,
where we allow N to be any integer, and set v(c) := min{i | ¢; # 0}.
o Let K = Q and set v(m/n) :=the number of factors 3 in m minus the
number of factors 3 in n. This is the 3-adic valuation. Similarly with other
primes p.
e Let K be arbitrary and set v(c) = 0 for ¢ # 0 and v(0) = oo; the trivial
valuation.

L(er)nma 3.3. v(1) = v(-1) =0 and v(a) = v(—a) and v(a) < v(b) = v(a+b) =
Proof. v(1) = v(1-1) = v(1) + v(1) proves the first; and 0 = v(1) = v((=1)?) =
v(—=1) 4+ v(—1) the second. For the last, note that v(a 4+ b) > v(a) would lead to
v(a) =v((a +b) —b) > min{v(a + b),v(b)} > v(a). O

Definition 3.4. Given p € K[z],p = co + c1x + -+ + cgx?, define trop(p) :=
“v(co) +v(cr)m + -+ +v(cq)z? € Roo[z], the tropicalisation of p.

)
Cit y

Proposition 3.5 (Newton). Suppose that p factors completely over K, so that
it has roots ay,...,aq, listed with multiplicities. Then the roots of trop(p) are
v(ai),...,v(aq), listed with multiplicities.

This uses the following lemma, which says that trop yields a multiplicative map
from polynomials to functions Ry, — Ry (but not to Ry [z]).
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Lemma 3.6 (Gauss). For p,q € K[x] the tropical polynomials trop(pq), trop(p) ®
trop(q) € Ruo[z] define the same functions Roo — Roo.

Proof. Write p = pg + - -+ + pgz® and ¢ = qo + - - gox®. Then, at a fixed = € Ry,
the k-th term of trop(pq) is (in classical notation)

a.) 4+ kx> mi 0:) + kr = mi N iz + )t ),
U(i;kpij)—i_ T _iﬂlilkv(pzq]) T 7_Iglilk(v(pz) ir) + (v(gj) + jx)

which is at least
min(v(p;) + ix) + min(v(g;) + jx) = trop(p)(z) © trop(g) ().

This shows one inequality. For the opposite, we need to show (still, for a fixed
x € Ry ) that there is a k for which the inequalities are equalities. Take 7o minimal
where min; (v(p;)+ix) is attained and jo minimal where min;(v(g;)+jz) is attained
and set k := ig + jo. For (i,7) # (ig, jo) with i + j = k we have either i < ig or
7 < jo. In either case we have

v(pig;) +kx = v(pi) +iz +v(gy) + jz > v(pi,) +iox +v(gj,) + Jor = v(piyqj,) + k

so v(pig;j) > v(Piyqj,). Then, by Lemma 3.3 above, it follows that the k-th term in
trop(pq) equals
v(Pio@jo) + kx = trop(p)(x) + trop(q)(z).
([

Proof of Newton’s proposition. By Gauss’s lemma, the proposition reduces to the
case of linear polynomials p = z — a. Now trop(p) = = @ v(a), which defines the
piecewise linear function that equals x for x < v(a) and v(a) for z > v(a). O

4. TROPICAL PLANE CURVES

o Let f = “3 cacia'y’” € Ruola,y] where A C Z2, is a finite set of
exponent pairs and ¢;; # oo for all (4, 5) € A.
e This defines a function R2, — R, given by

z,y) — min (¢;; +itx + jy).
(z,y) (i’j)GA( j 7y)

This function is continuous, concave, piecewise linear with finitely many
linear pieces, where it has integral slopes.

e Like in the univariate case, every function with these properties is deter-
mined by some bivariate tropical polynomial. (“Unique factorisation” does
not hold, though.)

e FBualuating f at a point (x,y) corresponds to solving a linear program, as
follows. Let A" C R3 be the set of the points (i, j, ¢;;) with (i,7) € A, so
that f(z,y) = mingea/(z,y,1) - a. Since the function a — (z,y,1) - a is
linear, the minimum remains the same if we replace the domain A’ by its
convex hull P. The subset of P where the minimum is attained will be
either a vertex, or an edge, or a two-dimensional polygon. Since the last
coordinate of the linear function is positive, this minimising face will be
“visible from below”.
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We now come to a notion whose higher-dimensional generalisation will be
one of the most important notions in this course:

V(f) = {(x,y) € Ry | f is either infinite or nonlinear at (z,y)} C R,

is the tropical curve defined by f. Let’s not worry too much about co at

this point, and just look at (x,y) € R.

Example: f = “2+4 0z + 1y”.

Example: f = “2+4 1z + 322 + 1y + Ozy + 2y%”".

Higher-degree examples are best understood through the linear program-

ming interpretation above: if the minimising face is a vertex, then f is

locally linear near (x,y). However, if it is an edge or even a polygon, i.e.,

if there are at least two terms in the definition of f where the minimum is

attained, then f is not locally linear near (z,y).

The edges of P visible from below correspond to pairs (i,5) # (¢/,5’) with

the property that there exist (z,y) € R? such that ¢;; + iz + jy = ¢y +

iz +j'y < cpy + kx+ 1y for all (k,1) € A\ {(4,7),(#,5")}. The set of such

(x,y) forms an open interval in R2.

The edges of P seen from below project down into the convex hull of A,

which is called the Newton polygon of f. They give a subdivision of that

polygon into polygons. This subdivision is dual to V(f) in the following

sense:

(1) edges of the subdivision correspond bijectively to line segments of
V(f);

(2) the segment is perpendicular to the edge;

(3) in this correspondence, boundary edges of the subdivision correspond
to infinite rays of V' (f);

(4) polygons in the subdivision correspond to vertices in V(f), i.e., points
where several edges meet;

(5) vertices in the subdivision correspond to connected components of the
complement of V(f).

We equip the edges (and rays) of V (f) with positive integral weights, equal

to the lattice length of the corresponding edge in the dual subdivision. This

is the number of integral points on it minus one. [More generally, if ¢ is a

finite line segment in R™ with rational slope, then its lattice length is defined

as follows: pick a vector v in Z™ parallel to £ with ged of its coordinates 1

(i.e., a primitive vector). Then the lattice length of ¢ is the ordinary length

of £ length divided by the ordinary length ||v||.]

Thus V(f) NR? is a finite, one-dimensional polyhedral complex with ra-

tional slopes. Moreover, it satisfies an interesting balancing property, as

follows. Pick a vertex of V(f), corresponding to a polygon @ in the sub-

division. In the directions of each of its line segments, choose a primitive

vector, say v1,...,vr € Z? in counterclockwise order. Let mq,...,m; be

the multiplicities: the lattice lengths of the corresponding edges of Q). Then

>, miv; = 0. Indeed, rotating each v; counterclockwise by 90 degrees, this

sum just corresponds to the sum of the vectors along the edges of Q!.



