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Let V be a vector space over a field F and let K ⊇ F be a field extension. We
want to define a vector space VK together with an F-linear embedding V → VK in
a natural manner.1

The idea is, loosely speaking, that we compute with vectors in V as if they were
elements of a vector space over K. To make this idea precise, take a K-vector space
H (for “Heel groot”, very large) with basis consisting of symbols v, one for each
v ∈ V (including 0!). Hence the dimension of H is the cardinality of V , so infinite if
the field is infinite and V has positive dimension. Now we introduce relations that
identify addition and scalar multiplication in H with those in V whenever possible.
More precisely, we define the K-subspace U of H by

U := 〈{v1 + v2 − (v1 + v2) | v1, v2 ∈ V } ∪ {cv − c(v) | c ∈ F, v ∈ V }〉K.
Note that it would not make sense to take c ∈ K \ F in the last set of spanning
elements of U , since multiplication with c ∈ K does not make sense in V . We define
VK as the quotient H/U . Note that we have a natural map β : V → VK that sends
v to the coset v+U . We claim that this map is F-linear. Indeed, for v1, v2 ∈ V we
have

β(v1 + v2) = v1 + v2 + U = v1 + v2 + U = β(v1) + β(v2),
where we have used the first set of spanning elements of U . Second, for c ∈ F and
v ∈ V we have

β(cv) = cv + U = cv + U,

where we have used the second set of spanning elements of U . Note that we have
used all spanning elements of U in this proof. As a consequence, if α is any K-linear
map from H to a K-space W such that the map V → W, v 7→ α(v) is F-linear,
then the kernel of α must contain U . This observation is used in the proof of the
following theorem.

Theorem 0.1. For any F-linear map φ from V into a K-vector space W there
exists a unique K-linear map ψ from VK into W such that φ = ψ ◦ β.

Proof. We are forced to set ψ(β(v)) := φ(v) and since the every element of VK is
a K-linear combination of elements of the form β(v) (check this!), the requirement
that ψ be K-linear makes ψ unique. To prove existence, we use the property of U
above, as follows. There is a unique K-linear map ψ′ : H →W that maps v to φ(v)
(recall that the v form a basis of H). Now we want to set ψ(h + U) := ψ′(h). To
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examples. It means something like “without needing to make any further choices”. For instance, an
abstract vector space has no natural basis, but the space Fn does. An abstract, finite-dimensional
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prove that this is well-defined, we need to check that U is contained in the kernel
of ψ′. But this follows from the fact that the map V → W sending v to ψ′(v) is φ
and hence F-linear. �

The statement of the theorem is usually referred to as a universal property of VK
and β : V → VK.

Exercise 0.2. Use the theorem to prove that if v1, . . . , vn is an F-basis of V , then
β(v1), . . . , β(vn) is a K-basis of VK. Hint: use the basis of V for an F-linear map
into W = Kn.

The exercise implies that dimK VK = dimF V . Often we identify V with its image
β(V ) in VK; this is an F-linear subspace of the K-space VK. For instance, (Fn)K is
identified with Kn, and under this identification the standard basis of Fn is mapped
to the standard basis of Kn.


