EXERCISES FOR WEEK 9

JAN DRAISMA

In the lecture on 9 November I discussed bilinear forms, and their orbits (in the symmetric case) over fields \mathbb{F} of characteristic unequal to 2. (In particular, for \mathbb{F} closed under taking square roots, and for $\mathbb{F} = \mathbb{R}$, and for \mathbb{F} finite.)

Exercise 0.1. Let f be an alternating form on a finite-dimensional vector space V.

(1) Prove that there exists a basis v_1, \ldots, v_n of V whose Gram matrix with respect to f is a block-diagonal matrix $\operatorname{diag}(A_1, \ldots, A_k, 0, \ldots, 0)$, where $2k \leq n$, each A_i equals the matrix

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$

and there are n-2k trailing zeroes (1 × 1-blocks on the diagonal).

- (2) Conclude that the rank of any alternating bilinear form is even.
- (3) Conclude that there are exactly $\lfloor n/2 \rfloor + 1$ GL(V)-orbits of alternating bilinear forms.

Exercise 0.2. Give two symmetric bilinear forms on $V = \mathbb{F}_5^2$ that have both rank two but are in different $GL_2(\mathbb{F}_5)$ -orbits.

Date: 10 November 2010.

1