EXTRA EXERCISE FOR WEEK 3

JAN DRAISMA

Given a vector space V over \mathbb{F} , a linear map $\phi \in \mathcal{L}(V)$, and a field extension $\mathbb{K} \supseteq \mathbb{F}$, there is a unique \mathbb{K} -linear map $\phi_{\mathbb{K}} \in \mathcal{L}(V_{\mathbb{K}})$ such that $\phi_{\mathbb{K}} \circ \beta = \beta \circ \phi$, where $\beta : V \to V_{\mathbb{K}}$ is the natural \mathbb{F} -linear embedding from last week.

- (1) Prove that the map $\mathcal{L}(V) \to \mathcal{L}(V_{\mathbb{K}}), \ \phi \mapsto \phi_{\mathbb{K}}$ is a homomorphism of \mathbb{F} -algebras.
- (2) Prove that if ϕ_1, \ldots, ϕ_k are \mathbb{F} -linearly independent elements of $\mathcal{L}(V)$, then $(\phi_1)_{\mathbb{K}}, \ldots, (\phi_k)_{\mathbb{K}}$ are \mathbb{K} -linearly independent elements of $\mathcal{L}(V_{\mathbb{K}})$.
- (3) Prove that the minimal polynomial of $\phi_{\mathbb{K}}$ equals that of ϕ .

Date: 15 September 2010.