EXERCISES FOR WEEK 10

JAN DRAISMA

In the lecture I discussed σ -sesquilinear forms, and in particular σ -Hermitian forms. For some pairs of a field \mathbb{F} and an automorphism σ of order two, I described their orbits.

Exercise 0.1. Let V be an n-dimensional vector space over \mathbb{C} and let σ denote complex conjugation.

- (1) Let f and h be σ -Hermitian forms on V. Prove that if f and h are in the same GL(V)-orbit (that is, there exists an invertible $g \in \mathcal{L}(V)$ such that $f(g^{-1}v, g^{-1}w) = h(v, w)$ for all v, w), then their ranks must be the same.
- (2) Let f and h be σ -Hermitian forms on V with the same radical $U = \operatorname{Rad}(f) = \operatorname{Rad}(h)$. Then they induce σ -Hermitian forms on the quotient space V/U by $\tilde{f}(v+U,w+U) = f(v,w)$, and similarly for h. Prove that f and h are in the same $\operatorname{GL}(V)$ -orbit if and only if \tilde{f} and \tilde{h} are in the same $\operatorname{GL}(V/U)$ -orbit.

We have seen (in the exercise class) that for every σ -Hermitian form f on V there exists a basis v_1, \ldots, v_n of V whose Gram matrix is diagonal with (consecutively, from top left to bottom right) p ones, q minus-ones, and n-p-q zeroes on the diagonal.

- (3) Let f be a σ -Hermitian form, and choose a basis and p and q as above. Prove that for every non-zero v in the span of v_1, \ldots, v_p we have f(v, v) > 0.
- (4) Prove that for every subspace W of V of dimension strictly larger than p there exists a non-zero $w \in W$ with $f(w, w) \leq 0$.
- (5) Conclude that p is determined uniquely by f, and that there are exactly $\frac{1}{2}(n+1)(n+2)$ GL(V)-orbits of σ -Hermitian forms on V.