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Chapter 1

Lecture 1. Introducing
invariant theory

The first lecture gives some flavor of the theory of invariants. Basic notions such
as (linear) group representation, the ring of regular functions on a vector space
and the ring of invariant functions are defined, and some instructive examples
are given.

1.1 Polynomial functions

Let V be a complex vector space. We denote by V ∗ := {f : V → C linear map}
the dual vector space. Viewing the elements of V ∗ as functions on V , and
taking the usual pointwise product of functions, we can consider the algebra of
all C-linear combinations of products of elements from V ∗.

Definition 1.1.1. The coordinate ring O(V ) of the vectorspace V is the algebra
of functions F : V → C generated by the elements of V ∗. The elements of O(V )
are called polynomial or regular functions on V .

If we fix a basis e1, . . . , en of V , then a dual basis of V ∗ is given by the
coordinate functions x1, . . . , xn defined by xi(c1e1 + · · · + cnen) := ci. For the
coordinate ring we obtain O(V ) = C[x1, . . . , xn]. This is a polynomial ring in
the xi, since our base field C is infinite.

Exercise 1.1.2. Show that indeed C[x1, . . . , xn] is a polynomial ring. In other
words, show that the xi are algebraically independent over C: there is no
nonzero polynomial p ∈ C[X1, . . . , Xn] in n variables X1, . . . , Xn, such that
p(x1, . . . , xn) = 0. Hint: this is easy for the case n = 1. Now use induction on
n.

We call a regular function f ∈ O(V ) homogeneous of degree d if f(tv) =
tdf(v) for all v ∈ V and t ∈ C. Clearly, the elements of V ∗ are regular of degree
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6 CHAPTER 1. LECTURE 1. INTRODUCING INVARIANT THEORY

1, and the product of polynomials f, g homogeneous of degrees d, d′ yields a
homogeneous polynomial of degree d+d′. It follows that every regular function
f can be written as a sum f = c0 + c1f1 + · · · + ckfk of regular functions fi
homogeneous of degree i. This decomposition is unique (disregarding the terms
with zero coefficient). Hence we have a direct sum decomposition O(V ) =⊕

d∈NO(V )d, where O(V )d := {f ∈ O(V ) | f homogeneous of degree d}, mak-
ing O(V ) into a graded algebra.

Exercise 1.1.3. Show that indeed the decomposition of a regular function f
into its homogeneous parts is unique.

In terms of the basis x1, . . . , xn, we have O(V )d = C[x1, . . . , xn]d, where
C[x1, . . . , xn]d consists of all polynomials of total degree d and has as basis the
monomials xd11 x

d2
2 · · ·xdnn for d1 + d2 + · · ·+ dn = d.

1.2 Representations

Central objects in this course are linear representations of groups. For any
vector space V we write GL(V ) for the group of all invertible linear maps from
V to itself. When we have a fixed basis of V , we may identify V with Cn and
GL(V ) with the set of invertible matrices n× n matrices GL(Cn) ⊂ Matn(C).

Definition 1.2.1. Let G be a group and let X be a set. An action of G on X
is a map α : G×X → X such that α(1, x) = x and α(g, α(h, x)) = α(gh, x) for
all g, h ∈ G and x ∈ X.

If α is clear from the context, we will usually write gx instead of α(g, x).
What we have just defined is sometimes called a left action of G on X; right
actions are defined similarly.

Definition 1.2.2. If G acts on two sets X and Y , then a map φ : X → Y is
called G-equivariant if φ(gx) = gφ(x) for all x ∈ X and g ∈ G. As a particular
case of this, if X is a subset of Y satisfying gx ∈ X for all x ∈ X and g ∈ G,
then X is called G-stable, and the inclusion map is G-equivariant.

Example 1.2.3. The symmetric group S4 acts on the set
(
[4]
2

)
of unordered

pairs of distinct numbers in [4] := {1, 2, 3, 4} by g{i, j} = {g(i), g(j)}. Think of
the edges in a tetrahedron to visualise this action. The group S4 also acts on the
set X := {(i, j) | i, j ∈ [4] distinct} of all ordered pairs by g(i, j) = (g(i), g(j))—
think of directed edges—and the map X →

(
[4]
2

)
sending (i, j) to {i, j} is S4-

equivariant.

Definition 1.2.4. Let G be a group and let V be a vector space. A (linear)
representation of G on V is a group homomorphism ρ : G→ GL(V ).

If ρ is a representation of G, then the map (g, v) 7→ ρ(g)v is an action of G
on V . Conversely, if we have an action α of G on V such that α(g, .) : V → V is
a linear map for all g ∈ G, then the map g 7→ α(g, .) is a linear representation.
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As with actions, instead of ρ(g)v we will often write gv. A vector space with an
action of G by linear maps is also called a G-module.

Given a linear representation ρ : G → GL(V ), we obtain a linear represen-
tation ρ∗ : G → GL(V ∗) on the dual space V ∗, called the dual representation
or contragredient representation and defined by

(ρ∗(g)x)(v) := x(ρ(g)−1v) for all g ∈ G, x ∈ V ∗ and v ∈ V . (1.1)

Exercise 1.2.5. Let ρ : G → GLn(C) be a representation of G on Cn. Show
that with respect to the dual basis, ρ∗ is given by ρ∗(g) = (ρ(g)−1)T, where AT

denotes the transpose of the matrix A.

1.3 Invariant functions

Definition 1.3.1. Given a representation of a group G on a vector space V , a
regular function f ∈ O(V ) is called G-invariant or simply invariant if f(v) =
f(gv) for all g ∈ G, v ∈ V . We denote by O(V )G ⊆ O(V ) the subalgebra of
invariant functions. The actual representation of G is assumed to be clear from
the context.

Observe that f ∈ O(V ) is invariant, precisely when it is constant on the
orbits of V under the action of G. In particular, the constant functions are
invariant.

The representation of G on V induces an action on the (regular) functions
on V by defining (gf)(v) := f(g−1v) for all g ∈ G, v ∈ V . This way the
invariant ring can be discribed as the set of regular functions fixed by the
action of G: O(V )G = {f ∈ O(V ) | gf = f for all g ∈ G}. Observe that
when restricted to V ∗ ⊂ O(V ), this action coincides with the action corre-
sponding to the dual representation. In terms of a basis x1, . . . , xn of V ∗, the
regular functions are polynomials in the xi and the action of G is given by
gp(x1, . . . , xn) = p(gx1, . . . , gxn) for any polynomial p. Since for every d, G
maps the set of polynomials homogeneous of degree d to itself, it follows that
the homogeneous parts of an invariant are invariant as well. This shows that
O(V )G =

⊕
dO(V )Gd , where O(V )Gd := O(V )d ∩ O(V )G.

Example 1.3.2. Consider the representation ρ : Z/3Z → GL2(C) defined by
mapping 1 to the matrix

(
0 −1
1 −1

)
(and mapping 2 to

(−1 1
−1 0

)
and 0 to the identity

matrix). With respect to the dual basis x1, x2, the dual representation is given
by:

ρ∗(0) =
(

1 0
0 1

)
, ρ∗(1) =

(
−1 −1
1 0

)
, ρ∗(2) =

(
0 1
−1 −1

)
. (1.2)

The polynomial f = x2
1 − x1x2 + x2

2 is an invariant:

ρ∗(1)f = (−x1 +x2)2− (−x1 +x2)(−x1) + (−x1)2 = x2
1−x1x2 +x2

2 = f, (1.3)
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and since 1 is a generator of the group, f is invariant under all elements of the
group. Other invariants are x2

1x2 − x1x
2
2 and x3

1 − 3x1x
2
2 + x3

2. These three
invariants generate the ring of invariants, althought it requires some work to
show that.

A simpler example in which the complete ring of invariants can be computed
is the following.

Example 1.3.3. Let D4 be the symmetry group of the square, generated by a
rotation r, a reflection s and the relations r4 = e, s2 = e and srs = r3, where e
is the identity. The representation ρ of D4 on C2 is given by

ρ(r) =
(

0 1
−1 0

)
, ρ(s) =

(
−1 0
0 1

)
, (1.4)

the dual representation is given by the same matrices:

ρ∗(r) =
(

0 1
−1 0

)
, ρ∗(s) =

(
−1 0
0 1

)
. (1.5)

It is easy to check that x2
1+x2

2 and x2
1x

2
2 are invariants, and so are all polynomial

expressions in these two invariants. We will show that in fact O(C2)D4 =
C[x2

1 + x2
2, x

2
1x

2
2] =: R. It suffices to show that all homogeneous invariants

belong to R.
Let p ∈ C[x1, x2] be a homogeneous invariant. Since sp = p, only monomials

having even exponents for x1 can occur in p. Since r2s exchanges x1 and x2,
for every monomial xa1x

b
2 in p, the monomial xb1x

a
2 must occur with the same

exponent. This proves the claim since every polynomial of the form x2n
1 x2m

2 +
x2m

1 x2n
2 is an element of R. Indeed, we may assume that n ≤ m and proceed

by induction on n + m, the case n + m = 0 being trivial. If n > 0 we have
q = (x2

1x
2
2)n(x2m−2n

2 +x2m−2n
1 ) and we are done. If n = 0 we have 2q = 2(x2m

1 +
x2m

2 ) = 2(x2
1+x2

2)m−
∑m−1
i=1

(
m
i

)
(x2i

1 x
2m−2i
2 ) and we are done by induction again.

1.4 Conjugacy classes of matrices

In this section we discuss the polynomial functions on the square matrices,
invariant under conjugation of the matrix variable by elements of GLn(C). This
example shows some tricks that are useful when proving that certain invariants
are equal. Denote by Mn(C) the vectorspace of complex n × n matrices. We
consider the action of G = GLn(C) on Mn(C) by conjugation: (g,A) 7→ gAg−1

for g ∈ GLn(C) and A ∈ Mn(C). We are interested in finding all polynomials
in the entries of n× n matrices that are invariant under G. Two invariants are
given by the functions A 7→ detA and A 7→ trA.

Let

χA(t) := det(tI −A) = tn − s1(A)tn−1 + s2(A)tn−2 − · · ·+ (−1)nsn(A) (1.6)
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be the characteristic polynomial of A. Here the si are polynomials in the entries
of A. Clearly,

χgAg−1(t) = det(g(tI −A)g−1) = det(tI −A) = χA(t) (1.7)

holds for all t ∈ C. It follows that the functions s1, . . . , sn are G-invariant.
Observe that s1(A) = trA and sn(A) = detA.

Proposition 1.4.1. The functions s1, . . . , sn generate O(Matn(C))GLn(C) and
are algebraically independent.

Proof. To each c = (c1, . . . , cn ∈ Cn we associate the so-called companion matrix

Ac :=



0 · · · · · · 0 −cn

1
. . .

... −cn−1

0
. . . . . .

...
...

...
. . . . . . 0 c2

0 · · · 0 1 c1


∈Mn(C). (1.8)

A simple calculation shows that χAc(t) = tn + cn−1t
n−1 + · · ·+ c1t+ c0.

Exercise 1.4.2. Verify that χAc(t) = tn + cn−1t
n−1 + · · ·+ c1t+ c0.

This implies that si(Ac) = (−1)ici and therefore

{(s1(Ac), s2(Ac), . . . , sn(Ac) | A ∈Mn(C)} = Cn. (1.9)

It follows that the si are algebraically independent over C. Indeed, suppose that
p(s1, . . . , sn) = 0 for some polynomial p in n variables. Then

0 = p(s1, . . . , sn)(A) = p(s1(A), . . . , sn(A)) (1.10)

for all A and hence p(c1, . . . , cn) = 0 for all c ∈ Cn. But this implies that p
itself is the zero polynomial.

Now let f ∈ O(Matn(C))G be an invariant function. Define the polyno-
mial p in n variables by p(c1, . . . , cn) := f(Ac), and P ∈ O(Matn(C))G by
P (A) := p(−s1(A), s2(A), . . . , (−1)nsn(A)). By definition, P and f agree on
all companion matrices, and since they are both G-invariant they agree on
W := {gAcg−1 | g ∈ G, c ∈ Cn}. To finish the proof, it suffices to show that W
is dense in Matn(C) since f − P is continuous and zero on W . To show that
W is dense in O(Matn(C)), it suffices to show that the set of matrices with n
distinct nonzero eigenvalues is a subset of W and is itself dense in O(Matn(C)).
This we leave as an exercise.

Exercise 1.4.3. Let A ∈ Matn(C) have n distinct nonzero eigenvalues. Show
that A is conjugate to Ac for some c ∈ Cn. Hint: find v ∈ Cn such that
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v,Av,A2v, . . . , An−1v is a basis for Cn. You might want to use the fact that
the Vandermonde determinant

det


1 . . . 1
c1 . . . cn
c21 . . . c2n
...

. . .
...

cn−1
1 · · · cn−1

n

 (1.11)

is nonzero if c1, . . . , cn are distinct and nonzero.

Exercise 1.4.4. Show that the set of matrices with n distinct nonzero eigen-
values is dense in the set of all complex n × n matrices. Hint: every matrix is
conjugate to an upper triangular matrix.

1.5 Exercises

Exercise 1.5.1. Let G be a finite group acting on V = Cn, n ≥ 1. Show that
O(V )G contains a nontrivial invariant. That is, O(V )G 6= C. Give an example
of an action of an infinite group G on V with the property that only the constant
functions are invariant.

Exercise 1.5.2. Let ρ : Z/2Z→ GL2(C) be the representation given by ρ(1) :=(−1 0
0 −1

)
. Compute the invariant ring. That is, give a minimal set of generators

for O(C2)Z/2Z.

Exercise 1.5.3. Let U := {( 1 a
0 1 ) | a ∈ C} act on C2 in the obvious way. Denote

the coordinate functions by x1, x2. Show that O(C2)U = C[x2].

Exercise 1.5.4. Let ρ : C∗ → GL3(C) be the representation given by ρ(t) =(
t−2 0 0
0 t−3 0
0 0 t4

)
. Find a minimal system of generators for the invariant ring.

Exercise 1.5.5. Let π : Matn(C)→ Cn be given by π(A) := (s1(A), . . . , sn(A)).
Show that for every c ∈ Cn the fiber {A | π(A) = c} contains a unique conjugacy
class {gAg−1 | g ∈ GLn(C)} of a diagonalizable (semisimple) matrix A.



Chapter 2

Lecture 2. Symmetric
polynomials

In this chapter, we consider the natural action of the symmetric group Sn on
the ring of polynomials in the variables x1, . . . , xn. The fundamental theorem of
symmetric polynomials states that the elementary symmetric polynomials gen-
erate the ring of invariants. As an application we prove a theorem of Sylvester
that characterizes when a univariate polynomial with real coefficients has only
real roots.

2.1 Symmetric polynomials

Let the group Sn act on the polynomial ring C[x1, . . . , xn] by permuting the
variables:

σp(x1, . . . , xn) := p(xσ(1), . . . , xσ(n)) for all σ ∈ Sn. (2.1)

The polynomials invariant under this action of Sn are called symmetric poly-
nomials. As an example, for n = 3 the polynomial x2

1x2 +x2
1x3 +x1x

2
2 +x1x

2
3 +

x2
2x3 + x2x

2
3 + 7x1 + 7x2 + 7x3 is symmetric, but x2

1x2 + x1x
2
3 + x2

2x3 is not
symmetric (although it is invariant under the alternating group).

In terms of linear representations of a group, we have a linear representation
ρ : Sn → GLn(C) given by ρ(σ)ei := eσ(i), where e1, . . . , en is the standard
basis of Cn. On the dual basis x1, . . . , xn the dual representation is given by
ρ∗(σ)xi = xσ(i), as can be easily checked. The invariant polynomial functions
on Cn are precisely the symmetric polynomials.

Some obvious examples of symmetric polynomials are

s1 := x1 + x2 + · · ·+ xn and (2.2)
s2 := x1x2 + x1x3 + · · ·+ x1xn + · · ·+ xn−1xn (2.3)

More generally, for every k = 1, . . . , n, the k-th elementary symmetric polyno-

11
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mial
sk :=

∑
i1<...<ik

xi1 · · ·xik (2.4)

is invariant. Recall that these polynomials express the coefficients of a univariate
polynomial in terms of its roots:

n∏
i=1

(t− xi) = xn +
n∑
k=1

(−1)ksktn−k. (2.5)

Moreover, if g is any polynomial in n variables y1, . . . , yn, then g(s1, . . . , sn) is
again a polynomial in the xi which is invariant under all coordinate permuta-
tions. A natural question is: which symmetric polynomials are expressible as a
polynomial in the elementary symmetric polynomials. For example x2

1 + · · ·+x2
n

is clearly symmetric and it can be expressed in terms of the si:

x2
1 + · · ·+ x2

n = s21 − 2s2. (2.6)

It is a beautiful fact that the elementary symmetric polynomials generate all
symmetric polynomials.

Theorem 2.1.1 (Fundamental theorem of symmetric polynomials). Every Sn-
invariant polynomial f(x1, . . . , xn) in the xi can be written as g(s1, . . . , sn),
where g = g(y1, . . . , yn) is a polynomial in n variables. Moreover, given f , the
polynomial g is unique.

The proof of this result uses the lexicographic order on monomials in the
variables x = (x1, . . . , xn). We say that xα := xα1

1 · · ·xαnn is (lexicographically)
larger than xβ if there is a k such that αk > βk and αi = βi for all i < k. So
for instance x2

1 > x1x
4
2 > x1x

3
2 > x1x2x

5
3, etc. The leading monomial lm(f) of

a non-zero polynomial f in the xi is the largest monomial (with respect to this
ordering) that has non-zero coefficient in f .

Exercise 2.1.2. Check that lm(fg) = lm(f)lm(g) and that lm(sk) = x1 · · ·xk.

Exercise 2.1.3. Show that there are no infinite lexicographically strictly de-
creasing chains of monomials.

Since every decreasing chain of monomials is finite, we can use this order to
do induction on monomials, as we do in the following proof.

Proof of Theorem 2.1.1. Let f be any Sn-invariant polynomial in the xi. Let xα

be the leading monomial of f . Then α1 ≥ . . . ≥ αn because otherwise a suitable
permutation applied to xα would yield a lexicographically larger monomial,
which has the same non-zero coefficient in f as xα by invariance of f . Now
consider the expression

sαnn s
αn−1−αn
n−1 · · · sα1−α2

1 . (2.7)
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The leading monomial of this polynomial equals

(x1 · · ·xn)αn(x1 · · ·xn−1)αn−1−αn · · ·xα1−α2
1 , (2.8)

which is just xα. Subtracting a scalar multiple of the expression from f therefore
cancels the term with monomial xα, and leaves an Sn-invariant polynomial with
a strictly smaller leading monomial. After repeating this step finitely many
times, we have expressed f as a polynomial in the sk.

This shows existence of g in the theorem. For uniqueness, let g ∈ C[y1, . . . , yn]
be a nonzero polynomial in n variables. It suffices to show that g(s1, . . . , sn) ∈
C[x1, . . . , xn] is not the zero polynomial. Observe that

lm(sα1
1 · · · sαnn ) = xα1+···+αn

1 xα2+···+αn
2 · · ·xαnn . (2.9)

It follows that the leading monomials of the terms sα1
1 · · · sαnn , corresponding

to the monomials occuring with nonzero coefficient in g =
∑
α y

α, are pairwise
distinct. In particular, the largest such leading monomial will not be cancelled
in the sum and is the leading monomial of g(s1, . . . , sn).

Remark 2.1.4. The proof shows that in fact the coefficients of the polynomial
g lie in the ring generated by the coefficients of f . In particular, when f has
real coefficients, also g has real coefficients.

Exercise 2.1.5. Let π : Cn → Cn be given by

π(x1, . . . , xn) = (s1(x1, . . . , xn), . . . , sn(x1, . . . , xn)). (2.10)

Use the fact that every univariate polynomial over the complex numbers can be
factorised into linear factors to show that π is surjective. Use this to show that
s1, . . . , sn are algebraically independent over C. Describe for b ∈ Cn the fiber
π−1(b).

Remark 2.1.6. The above proof of the fundamental theorem of symmetric
polynomials gives an algorithm to write a given symmetric polynomial as a
polynomial in the elementary symmetric polynomials. In each step the initial
monomial of the residual symmetric polynomial is decreased, ending with the
zero polynomial after a finite number of steps. Instead of using the described
lexicographic order on the monomials, other linear orders can be used. An
example would be the degree lexicographic order, where we set xα > xβ if either
α1 + · · ·+αn > β1 + · · ·+βn or equality holds and there is a k such that αk > βk
and αi = βi for all i < k.

Example 2.1.7. We write x3
1 + x3

2 + x3
3 as a polynomial in the si. Since the

leading monomial is x3
1x

0
2x

0
3 we subtract s03s

0
2s

3
1 and are left with −3(x2

1x2 +
x2

1x3 + x1x
2
2 + x1x

2
3 + x2

2x3 + x2x
2
3) − 6(x1x2x3). The leading monomial is

now x2
1x2, so we add 3s03s

1
2s

2−1
1 . This leaves 3x1x2x3 = 3s13s

1−1
2 s1−1

1 , which is
reduced to zero in the next step.

This way we obtain x3
1 + x3

2 + x3
3 = s31 − 3s1s2 + 3s3.

Exercise 2.1.8. Give an upper bound on the number of steps of the algo-
rithm in terms of the number of variables n and the (total) degree of the input
polynomial f .
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2.2 Counting real roots

Given a (monic) polynomial f(t) = tn−a1t
n−1 + · · ·+ (−1)nan, the coefficients

are elementary symmetric functions in the roots of f . Therefore, any property
that can be expressed as a symmetric polynomial in the roots of f , can also be
expressed as a polynomial in the coefficients of f . This way we can determine
properties of the roots by just looking at the coefficients of f . For example:
when are all roots of f distinct?

Definition 2.2.1. For a (monic) polynomial f = (t−x1) · · · (t−xn), define the
discriminant ∆(f) of f by ∆(f) :=

∏
1≤i<j≤n(xi − xj)2.

Clearly, ∆(f) = 0 if and only if all roots of f are distinct. It is not hard to
see that ∆(f) is a symmetric polynomial in the roots of f . We will see later
how f can be expressed in terms of the coefficients of f .

Exercise 2.2.2. Let f(t) = t2−at+ b. Write ∆(f) as a polynomial in a and b.

Definition 2.2.3. Given n complex numbers x1, . . . , xn, the Vandermonde ma-
trix A for these numbers is given by

A :=


1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
... · · ·

...
1 xn · · · xn−1

n

 . (2.11)

Lemma 2.2.4. Given numbers x1, . . . , xn, the Vandermonde matrix A has
nonzero determinant if and only if the x1, . . . , xn are distinct.

Proof. View the determinant of the Vandermonde matrix (called the Vander-
monde determinant) as a polynomial p in the variables x1, . . . , xn. For any
i < j, p(x1, . . . , xn) = 0 when xi = xj and hence p is divisible by (xj − xi).
Expanding the determinant, we see that p is homogeneous of degree

(
n
2

)
, with

lowest monomial x0
1x

1
2 · · ·xn−1

n having coefficient 1. It follows that

p =
∏

1≤i<j≤n

(xj − xi), (2.12)

since the right-hand side divides p, and the two polynomials have the same
degree and the same nonzero coefficient for x0

1x
1
2 · · ·xn−1

n .

Exercise 2.2.5. Show that the Vandermonde matrix A of numbers x1, . . . , xn
satisfies detA =

∏
1≤i<j≤n(xj − xi) by doing row- and column-operations on A

and applying induction on n.

Definition 2.2.6. Let f = (t − α1)(t − α2) · · · (t − αn) ∈ C[t] be a monic
polynomial of degree n in the variable t. We define the Bezoutiant matrix
Bez(f) of f by

Bez(f) = (pi+j−2(α1, . . . , αn))ni,j=1 , (2.13)

where pk(x1, . . . , xn) := xk1 + · · · + xkn for k = 0, 1, . . . is the k-th Newton poly-
nomial.
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Since the entries of Bez(f) are symmetric polynomials in the roots of f , it fol-
lows by the fundamental theorem of symmetric polynomials that the entries are
polynomials (with integer coefficients) in the elementary symmetric functions
and hence in the coefficients of f . In particular, when f has real coefficients,
Bez(f) is a real matrix. Another useful fact is that Bez(f) = ATA, where A is
the Vandermonde matrix for the roots α1, . . . , αn of f .

Exercise 2.2.7. Show that the discriminant of f satisfies: ∆(f) = det Bez(f).

Example 2.2.8. Let f = t2 − at + b have roots α and β. So a = α + β
and b = αβ. We compute Bez(f). We have p0 = 2, p1 = a, p2 = a2 − 2b
so Bez(f) =

(
2 a
a a2−2b

)
. The determinant equals a2 − 4b and the trace equals

a2 − 2b+ 2. There are three cases for the eigenvalues λ1 ≥ λ2 of Bez(f):

• If a2 − 4b > 0, we have λ1, λ2 > 0 and α, β are distinct real roots.

• If a2 − 4b = 0, we have λ1 > 0, λ2 = 0 and α = β.

• If a2− 4b < 0, we have λ1 > 0, λ2 < 0 and α and β are complex conjugate
(nonreal) roots.

The determinant of Bez(f) determines whether f has double roots. The
matrix Bez(f) can give us much more information about the roots of f . In
particular, it describes when a polynomial with real coefficients has only real
roots!

Theorem 2.2.9 (Sylverster). Let f ∈ R[t] be a polynomial in the variable t with
real coefficients. Let r be the number of distinct roots in R and 2k the number
of distinct roots in C \ R. Then the Bezoutiant matrix Bez(f) has rank r + 2k,
with r + k positive eigenvalues and k negative eigenvalues.

proof of Theorem 2.2.9. Number the roots α1, . . . , αn of f in such a way that
α1, . . . , α2k+r are distinct. We write mi for the multiplicity of the root αi,
i = 1, . . . , 2k+r. Let A be the Vandermonde matrix for the numbers α1, . . . , αn,
so that Bez(f) = ATA. We start by computing the rank of Bez(f).

Denote by Ã the (2k + r) × n submatrix of A consisting of the first 2k + r
rows of A. An easy computation shows that

Bez(f) = ATA = ÃT diag(m1, . . . ,m2k+r)Ã, (2.14)

where diag(m1, . . . ,m2k+r) is the diagonal matrix with the multiplicities of the
roots on the diagonal. Since, Ã contains a submatrix equal to the Vandermonde
matrix for the distinct roots α1, . . . , α2k+r, it follows by Lemma 2.2.4 that the
rows of Ã are linearly independent. Since the diagonal matrix has full rank, it
follows that Bez(f) has rank 2k + r.

To finish the proof, we write A = B + iC, where B and C are real matrices
and i denotes a square root of −1. Since f has real coefficients, Bez(f) is a real
matrix and hence

Bez(f) = BTB − CTC + i(CTB +BTC) = BTB − CTC. (2.15)
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We have
rank(B) ≤ r + k, rank(C) ≤ k. (2.16)

Indeed, for any pair α, α of complex conjugate numbers, the real parts of αj

and αj are equal and the imaginary parts are opposite. Hence B has at most
r + k different rows and C has (up to a factor −1) at most k different nonzero
rows.

Denote the kernel of Bez(f), B and C by N,NB and NC respectively. Clearly
NB ∩NC ⊆ N . This gives

dimN ≥ dim(NB ∩NC) ≥ dimNB + dimNC − n
≥ (n− r − k) + (n− k)− n
= n− r − 2k = dimN. (2.17)

Hence we have equality throughout, showing that dimNB = n−r−k,dimNC =
n− k and NB ∩NC = N .

Write NB = N ⊕ N ′B and NC = N ⊕ N ′C as a direct sum of vector spaces.
For all nonzero u ∈ N ′C , we have uTCTCu = 0 and uTBTBu > 0 and so
uTBez(f)u > 0. This shows that Bez(f) has at least dimN ′C = r + k positive
eigenvalues (see exercises). Similarly, uTBez(f)u < 0 for all nonzero u ∈ N ′B
so that Bez(f) has at least dimN ′B = k negative eigenvalues. Since Bez(f) has
n− r− 2k zero eigenvalues, it has exactly r+ k positive eigenvalues and exactly
k negative eigenvalues.

Exercise 2.2.10. Let B be a real n × n matrix and x ∈ Rn. Show that
xTBTBx ≥ 0 and that equality holds if and only if Bx = 0.

Exercise 2.2.11. Let A be a real symmetric n × n matrix. Show that the
following are equivalent:

• there exists a linear subspace V ⊆ Rn of dimension k such that xTAx > 0
for all nonzero x ∈ V ,

• A has at least k positive eigenvalues.

Exercise 2.2.12. Use the previous exercise to show Sylvesters law of inertia:
Given a real symmetric n × n matrix A and an invertible real matrix S, the
two matrices A and STAS have the same number of positive, negative and zero
eigenvalues. This implies that the signature of A can be easily determined by
bringing it into diagonal form using simultaneous row and column operations.

2.3 Exercises

Exercise 2.3.1. Let f(t) := t3 + at+ b, where a, b are real numbers.

• Compute Bez(f).

• Show that ∆(f) = −4a3 − 27b2.
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• Determine, in terms of a and b, when f has only real roots.

Exercise 2.3.2. Prove the following formulas due to Newton:

pk − s1pk−1 + · · ·+ (−1)k−1sk−1p1 + (−1)kksk = 0 (2.18)

for all k = 1, . . . , n.
Show that for k > n the following similar relation holds:

pk − s1pk−1 + · · ·+ (−1)nsnpk−n = 0. (2.19)

Hint: Let f(t) = (1− tx1) · · · (1− txn) and compute f ′(t)/f(t) in two ways.
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Chapter 3

Lecture 3. Multilinear
algebra

We review some constructions from linear algebra, in particular the tensor prod-
uct of vector spaces. Unless explicitly stated otherwise, all our vector spaces
are over the field C of complex numbers.

Definition 3.0.3. Let V1, . . . , Vk,W be vector spaces. A map φ : V1×· · ·×Vk →
W is called multilinear (or k-linear or bilinear if k = 2 or trilinear if k = 3) if
for each i and all v1, . . . , vi−1, vi+1, . . . , vk the map Vi →W, vi 7→ φ(v1, . . . , vk)
is linear.

Let U , V and T be vector spaces and let ⊗ : U × V → T be a bilinear
map. The map ⊗ is said to have the universal property if for every bilinear
map φ : U × V → W there exists a unique linear map f : T → W such that
φ = f ◦ ⊗.

U × V
φ //

⊗
��

W

T

f

;;wwwwwwwww

We will usually write u ⊗ v := ⊗(u, v) for (u, v) ∈ U × V . Although ⊗ will
in general not be surjective, the image linearly spans T .

Exercise 3.0.4. Show that if ⊗ : U × V → T has the universal property, the
vectors u⊗ v, u ∈ U, v ∈ V span T .

Given U and V , the pair (T,⊗) is unique up to a unique isomorphism. That
is, given two bilinear maps ⊗ : U ×V → T and ⊗′ : U ×V → T ′ that both have
the universal property, there is a unique linear isomorphism f : T → T ′ such
that f(u⊗ v) = u⊗′ v for all u ∈ U, v ∈ V . This can be seen as follows. Since
⊗′ is bilinear, there exists by the universal property of ⊗, a unique linear map
f : T → T ′ such that ⊗′ = f ◦⊗. It suffices to show that f is a bijection. By the

19
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universal property of ⊗′ there is a linear map f ′ : T ′ → T such that ⊗′ = f ′ ◦⊗.
Now ⊗ ◦ f ′ ◦ f = ⊗, which implies that f ′ ◦ f : T → T is the identity since the
image of ⊗ spans T (or alternatively, by using the universal property of ⊗, and
the bilinear map ⊗ itself). Hence f is injective. Similarly, f ◦ f ′ is the identity
on T ′ and hence f is surjective.

Definition 3.0.5. Let U, V be vector spaces. The tensor product of U and V
is a vector space T together with a bilinear map ⊗ : U × V → T having the
universal property. The space T , which is uniquely determined by U and V up
to an isomorphism, is denoted by U ⊗ V .

Often we will refer to U ⊗ V as the tensor product of U and V , implicitly
assuming the map ⊗ : U × V → U ⊗ V .

So far, we have not shown that the tensor product U ⊗ V exists at all, nor
did we gain insight into the dimension of this space in terms of the dimensions
of U and V . One possible construction of U ⊗ V is as follows.

Start with the vector space F (for free or formal) formally spanned by pairs
(u, v) as u, v run through U, V , respectively. Now take the subspace R (for
relations) of F spanned by all elements of the form

(c1u+ u′, c2v + v′)− c1c2(u, v)− c1(u, v′)− c2(u′, v)− (u′, v′) (3.1)

with c1, c2 ∈ C, v, v′ ∈ V, u, u′ ∈ U . Now any map φ : U × V → W factors
through the injection i : U × V → F and a unique linear map g : F → W .
The kernel of g contains R if and only if φ is bilinear, and in that case the map
g factors through the quotient map π : F → F/R and a unique linear map
f : F/R → W . Taking for ⊗ the bilinear map π ◦ i : (u, v) 7→ u ⊗ v, the space
F/R together with the map ⊗ is the tensor product of U and V .

As for the dimension of U ⊗ V , let (ui)i∈I be a basis of U . Then by using
bilinearity of the tensor product, every element T ∈ U ⊗ V can be written
as a t =

∑
i∈I ui ⊗ wi with wi non-zero for only finitely many i. We claim

that the wi in such an expression are unique. Indeed, for k ∈ I let ξk be
the linear function on U determined by ui 7→ δik, i ∈ I. The bilinear map
U × V → V, (u, v) → ξk(u)v factors, by the universal property, through a
unique linear map f : U ⊗ V → V . This map sends all terms in the expression∑
i∈I ui ⊗wi for T to zero except the term with i = k, which is mapped to wk.

Hence wk = fk(t) and this shows the uniqueness of the wk.

Exercise 3.0.6. Use a similar argument to show that if (vj)j∈J is a basis for
V , then the set of all elements of the form ui ⊗ vj , i ∈ I, j ∈ J form a basis of
U ⊗ V .

This exercise may remind you of matrices. Indeed, there is a natural map
φ from U ⊗ V ∗, where V ∗ is the dual of V , into the space Hom(V,U) of linear
maps V → U , defined as follows. Given a pair u ∈ U and f ∈ V ∗, φ(u ⊗ f) is
the linear map sending v to f(v)u. Here we are implicitly using the universal
property: the linear map v 7→ f(v)u depends bilinearly on f and u, hence there
is a unique linear map U ⊗ V ∗ → Hom(V,U) that sends u ⊗ f to v 7→ f(v)u.
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Note that if f and u are both non-zero, then the image of u⊗ f is a linear map
of rank one.

Exercise 3.0.7. 1. Show that φ is injective. Hint: after choosing a basis
(ui)i use that a general element of U ⊗V ∗ can be written in a unique way
as
∑
i ui ⊗ fi.

2. Show that φ is surjective onto the subspace of Hom(V,U) of linear maps
of finite rank, that is, having finite-dimensional image.

Making things more concrete, if U = Cm and V = Cn and u1, . . . , um is the
standard basis of U and v1, . . . , vn is the standard basis of V with dual basis
x1, . . . , xn, then the tensor ui ⊗ xj corresponds to the linear map with matrix
Eij , the matrix having zeroes everywhere except for a 1 in position (i, j).

Remark 3.0.8. A common mistake is to assume that all elements of U ⊗ V
are of the form u ⊗ v. The above shows that the latter elements correspond
to rank-one linear maps from V ∗ to U , or to rank-one matrices, while U ⊗ V
consists of all finite-rank linear maps from V ∗ to U—a much larger set.

Next we discuss tensor products of linear maps. If A : U → U ′ and B :
V → V ′ are linear maps, then the map U × V → U ′ ⊗ V ′, (u, v) 7→ Au⊗Bv is
bilinear. Hence, by the universal property of U ⊗ V there exists a unique linear
map U ⊗V → U ′⊗V ′ that sends u⊗v to Au⊗Bv. This map is denoted A⊗B.

Example 3.0.9. If dimU = m,dimU ′ = m′,dimV = n, dimV ′ = n′ and if
A,B are represented by an m′ ×m-matrix (aij)ij and an n′ × n-matrix (bkl)kl,
respectively, then A⊗B can be represented by an m′n′×mn-matrix, with rows
labelled by pairs (i, k) with i ∈ [m′], k ∈ [n′] and columns labelled by pairs (j, l)
with j ∈ [m], l ∈ [n], whose entry at position ((i, k), (j, l)) is aijbkl. This matrix
is called the Kronecker product of the matrices (aij)ij and (bkl)kl.

Exercise 3.0.10. Assume, in the setting above, that U = U ′,m′ = m and
V = V ′, n′ = n and A,B are diagonalisable with eigenvalues λ1, . . . , λm and
µ1, . . . , µn, respectively. Determine the eigenvalues of A⊗B.

Most of what we said about the tensor product of two vector spaces carries
over verbatim to the tensor product V1 ⊗ · · · ⊗ Vk of k. This tensor product
can again be defined by a universal property involving k-linear maps, and its
dimension is

∏
i dimVi. Its elements are called k-tensors. We skip the boring

details, but do point out that for larger k there is no longer a close relationship
with of k-tensors with linear maps—in particular, the rank of a k-tensor T ,
usually defined as the minimal number of terms in any expression of T as a sum
of pure tensors v1⊗· · ·⊗vk, is only poorly understood. For instance, computing
the rank, which for k = 2 can be done using Gaussian elimination, is very hard
in general. If all Vi are the same, say V , then we also write V ⊗k for V ⊗· · ·⊗V
(k factors).

Given three vector spaces U, V,W , we now have several ways to take their
tensor product: (U ⊗ V ) ⊗W , U ⊗ (V ⊗W ) and U ⊗ V ⊗W . Fortunately,



22 CHAPTER 3. LECTURE 3. MULTILINEAR ALGEBRA

these tensor products can be identified. For example, there is a unique linear
isomorphism f : U⊗V ⊗W → (U⊗V )⊗W such that f(u⊗v⊗w) = (u⊗v)⊗w
for all u ∈ U, v ∈ V,w ∈W .

Indeed, consider the trilinear map U × V ×W → (U ⊗ V ) ⊗W defined by
(u, v, w) 7→ (u⊗ v)⊗w. By the universal property, there is a unique linear map
f : U ⊗ V ⊗W → (U ⊗ V ) ⊗W such that f(u ⊗ v ⊗ w) = (u ⊗ v) ⊗ w for all
u, v, w.

Now for fixed w ∈W , the bilinear map φw : U ×V → U ⊗V ⊗W defined by
φw(u, v) := u⊗v⊗w induces a linear map gw : U⊗V → U⊗V ⊗W such that u⊗v
is mapped to u⊗ v⊗w. Hence the bilinear map φ : (U ⊗V )×W → U ⊗V ⊗W
given by φ(x,w) := gw(x) induces a linear map g : (U ⊗ V )⊗W → U ⊗ V ⊗W
sending (u⊗v)⊗w to u⊗v⊗w. It follows that f ◦g and g◦f are the identity on
(U⊗V )⊗W and U⊗V ⊗W respectively. This shows that f is an isomorphism.

Exercise 3.0.11. Let V be a vector space. Show that for all p, q there is a
unique linear isomorphism V ⊗p ⊗ V ⊗q → V ⊗(p+q) sending (v1 ⊗ · · · ⊗ vp) ⊗
(vp+1 ⊗ · · · ⊗ vp+q) to v1 ⊗ · · · ⊗ vp+q.

The direct sum TV :=
⊕∞

k=0 V
⊗k is called the tensor algebra of V , where

the natural linear map V ⊗k × V ⊗l → V ⊗k ⊗ V ⊗l = V ⊗(k+l) plays the role of
(non-commutative but associative) multiplication. We move on to other types
of tensors.

Definition 3.0.12. Let V be a vector space. A k-linear map ω : V k → W
is called symmetric if ω(v1, . . . , vk) = ω(vπ(1), . . . , vπ(k)) for all permutations
π ∈ Sym(k).

The k-th symmetric power of V is a vector space SkV together with a sym-
metric k-linear map V k → SkV, (v1, . . . , vk)→ v1 · · · vk such that for all vector
spaces W and symmetric k-linear maps ψ : V k → W there is a unique linear
map φ : SkV →W such that ψ(u1, . . . , uk) = φ(u1 · · ·uk).

Uniqueness of the k-th symmetric power of V can be proved in exactly the
same manner as uniqueness of the tensor product. For existence, let R be the
subspace of V ⊗k := V ⊗ · · · ⊗ V spanned by all elements of the form

v1 ⊗ · · · ⊗ vk − vπ(1) ⊗ · · · ⊗ vπ(k), π ∈ Sym(k).

Then the composition of the maps V k → V ⊗k → V ⊗k/R is a symmetric k-linear
map and if ψ : V k → W is any such map, then ψ factors through a linear map
V ⊗k →W since it is k-linear, which in turn factors through a unique linear map
V ⊗k/R→W since ψ is symmetric. This shows existence of symmetric powers,
and, perhaps more importantly, the fact that they are quotients of tensor powers
of V . This observation will be very important in proving the first fundamental
theorem for GL(V ).

There is also an analogue of the tensor product of maps: if A is a linear map
U → V , then the map Uk → SkV, (u1, . . . , uk) 7→ Au1 · · ·Auk is multilinear and
symmetric. Hence, by the universal property of symmetric powers, it factors
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through the map Uk → SkU and a linear map SkU → SkV . This map, which
sends u1 · · ·uk to Au1 · · ·Auk, is the k-th symmetric power SkA of A.

If (vi)i∈I is a basis of V , then using multilinearity and symmetry every
element t of SkV can be written as a linear combination

∑
α cαv

α of the elements
vα :=

∏
i∈I v

αi
i —the product order is immaterial—where α ∈ NI satisfies |α| :=∑

i∈I αi = k and only finitely many coefficients cα are non-zero. We claim that
the cα are unique, so that the vα, |α| = k a basis of V . Indeed, let α ∈ NI
with |α| = k. Then there is a unique k-linear map ψα : V k → C which on
a tuple (vi1 , . . . , vik) takes the value 1 if |{j | ij = i}| = αi for all i ∈ I and
zero otherwise. Moreover, ψα is symmetric and therefore induces a linear map
φα : SkV → C. We find that cα = φα(t), which proves the claim.

This may remind you of polynomials. Indeed, if V = Cn and x1, . . . , xn is
the basis of V ∗ dual to the standard basis of V , then SkV ∗ is just the space of
homogeneous polynomials in the xi of degree k. The algebra of all polynomial
functions on V therefore is canonically isomorphic to SV ∗ :=

⊕∞
k=0 S

kV ∗. The
product of a homogeneous polynomials of degree k and homogeneous polynomi-
als of degree l corresponds to the unique bilinear map SkV ∗ × SlV ∗ → Sk+lV ∗

making the diagram

(V ∗)⊗k × (V ∗)⊗l //

��

(V ∗)⊗k+l

��
SkV ∗ × SlV ∗ //____ Sk+lV ∗

commute, and this corresponds to multiplying polynomials of degrees k and
l. Thus SV ∗ is a quotient of the tensor algebra TV (in fact, the maximal
commutative quotient).

Above we have introduced SkV as a quotient of V ⊗k. This should not be
confused with the subspace of V ⊗k spanned by all symmetric tensors, defined as
follows. For every permutation π ∈ Sk there is a natural map V k → V k sending
(v1, . . . , vk) to (vπ−1(1), . . . , vπ−1(k)). Composing this map with the natural k-
linear map V k → V ⊗k yields another k-linear map V k → V ⊗k, and hence a
linear map V ⊗k → V ⊗k, also denoted π. A tensor ω in V ⊗k is called symmetric
if πω = ω for all π ∈ Sk. The restriction of the map V ⊗k → SkV to the
subspace of symmetric tensors is an isomorphism with inverse determined by
v1 · · · vk 7→ 1

k!

∑
π∈Sk π(v1⊗· · · vk). (Note that this inverse would not be defined

in characteristic less than k.)

Exercise 3.0.13. Show that the subspace of symmetric tensors in V ⊗k is
spanned by the tensors v ⊗ v · · · ⊗ v, where v ∈ V .

3.1 Exercises

Exercise 3.1.1. Let U ⊗ V be the tensor product of the vector spaces U and
V . Let u1, . . . , us and u′1, . . . , u

′
t be two systems of linearly independent vectors
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in U and let v1, . . . , vs and v′1, . . . , v
′
t be two systems of linearly independent

vectors in V . Suppose that

u1 ⊗ v1 + · · ·+ us ⊗ vs = u′1 ⊗ v′1 + · · ·+ u′t ⊗ v′t. (3.2)

Show that s = t.

Exercise 3.1.2. a) Let T ∈ V1 ⊗ V2 ⊗ V3 be an element of the tensor product
of V1, V2 and V3. Suppose that there exist v1 ∈ V1, v3 ∈ V3, T23 ∈ V2⊗V3

and T12 ∈ V1 ⊗ V2 such that

T = v1 ⊗ T23 = T12 ⊗ v3. (3.3)

Show that there exist a v2 ∈ V2 such that T = v1 ⊗ v2 ⊗ v3.

b) Suppose that T ∈ V1⊗V2⊗V3 can be written as a sum of at most d1 tensors
of the form v1 ⊗ T23, where v1 ∈ V1, T23 ∈ V2 ⊗ V3, and also as a sum of
at most d3 tensors of the form T12 ⊗ v3, where v3 ∈ V3, T12 ∈ V1 ⊗ V2.
Show that T can be written as the sum of at most d1d3 tensors of the
form v1 ⊗ v2 ⊗ v3, where vi ∈ Vi.

Exercise 3.1.3. Let U, V,W be vector spaces. Denote by B(U × V,W ) the
linear space of bilinear maps from U × V to W . Show that the map f 7→ f ◦ ⊗
is a linear isomorphism between Hom(U ⊗ V,W ) and B(U × V,W ).

Exercise 3.1.4. Let U, V be vector spaces. Show that the linear map φ :
U∗ ⊗ V ∗ → (U ⊗ V )∗ given by φ(f ⊗ g)(u⊗ v) := f(u)g(v) is an isomorhism.
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Lecture 4. Representations

Central objects in this course are linear representations of groups. We will
only consider representations on complex vector spaces. Recall the folowing
definition.

Definition 4.0.5. Let G be a group and let V be a vector space. A (linear)
representation of G on V is a group homomorphism ρ : G→ GL(V ).

If ρ is a representation of G, then the map (g, v) 7→ ρ(g)v is an action of
G on V . A vector space with an action of G by linear maps is also called a
G-module. Instead of ρ(g)v we will often write gv.

Definition 4.0.6. Let U and V be G-modules. A linear map φ : U → V is
called a G-module morphism or a G-linear map if φ(gu) = gφ(u) for all u ∈ U
and g ∈ G. If φ is invertible, then it is called an isomorphism of G-modules.
The linear space of all G-linear maps from U to V is denoted Hom(U, V )G.

The multilinear algebra constructions from Section 3 carry over to represen-
tations. For instance, if ρ : G→ GL(U) and σ : G→ GL(V ) are representations,
then the map ρ⊗σ : G→ GL(U ⊗V ), g 7→ ρ(g)⊗σ(g) is also a representation.
Similarly, for any natural number k the map g 7→ Skρ(g) is a representation of
G on SkV . Also, the dual space V ∗ of all linear functions on V carries a natural
G-module structure: for f ∈ V ∗ and g ∈ G we let gf be the linear function
defined by gf(v) = f(g−1v). The inverse ensures that the action is a left action
rather than a right action: for g, h ∈ G and v ∈ V we have

(g(hf))(v) = (hf)(g−1v) = f(h−1g−1v) = f((gh)−1v) = ((gh)f)(v),

so that g(hf) = (hg)f .

Exercise 4.0.7. Show that the set of fixed points in Hom(U, V ) under the
action of G is precisely Hom(U, V )G.

Example 4.0.8. Let V,U be G-modules. Then the space Hom(V,U) of linear
maps V → U is a G module with the action (gφ)(v) := gφ(g−1v). The space
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U ⊗ V ∗ is also a G-module with action determined by g(u⊗ f) = (gu)⊗ (gf).
The natural map Ψ : U ⊗ V ∗ → Hom(V,U) determined by Ψ(u ⊗ f)v = f(v)u
is a morphism of G-modules. To check this it suffices to observe that

Ψ(g(u⊗ f))v = Ψ((gu)⊗ (gf))v = (gf)(v) · gu = f(g−1v) · gu

and

(gΨ(u⊗ f))v = gΨ(u⊗ f)(g−1v) = g(f(g−1v)u) = f(g−1v) · gu.

The map Ψ is an G-module isomorphism of U⊗V ∗ with the space of finite-rank
linear maps from V to U . In particular, if U or V is finite-dimensional, then Ψ
is an isomorphism.

Example 4.0.9. Let G be a group acting on a set X. Consider the vectorspace

CX := {
∑
x∈X

λxx | λx ∈ C for all x ∈ X and λx = 0 for almost all x} (4.1)

consisting of all formal finite linear combinations of elements from X. The
natural action of G given by g(

∑
x λxx) :=

∑
x λxgx makes CX into a G module.

In the special case where X = G and G acts on itself by multiplication on the
left, the module CG is called the regular representation of G.

Definition 4.0.10. A G-submodule of a G-module V is a G-stable subspace,
that is, a subspace U such that gU ⊆ U for all g ∈ G. The quotient V/U then
carries a natural structure of G-module, as well, given by g(v+U) := (gv) +U .

Definition 4.0.11. A G-module V is called irreducible if it has precisely two
G-submodules (namely, 0 and V ).

Exercise 4.0.12. Show that for finite groups G, every irreducible G-module
has finite dimension.

Note that, just like 1 is not a prime number and the empty graph is not
connected, the zero module is not irreducible. In this course we will be concerned
only with G-modules that are either finite-dimensional or locally finite.

Definition 4.0.13. A G-module V is called locally finite if every v ∈ V is
contained in a finite-dimensional G-submodule of V .

Proposition 4.0.14. For a locally finite G-module V the following statements
are equivalent.

1. for every G-submodule U of V there is a G-submodule W of V such that
U ⊕W = V ;

2. V is a (potentially infinite) direct sum of finite-dimensional irreducible
G-submodules.

In this case we call V completely reducible; note that we include that condi-
tion that V be locally finite in this notion.
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Proof. First assume (1). Let M be the collection of all finite-dimensional ir-
reducible G-submodules of V . The collection of subsets S of M for which the
sum

∑
U∈S U is direct satisfies the condition of Zorn’s Lemma: the union of

any chain of such subsets S is again a subset of M whose sum is direct. Hence
by Zorn’s Lemma there exists a maximal subset S of M whose sum is direct.
Let U be its (direct) sum, which is a G-submodule of V . By (1) U has a direct
complement W , which is also a G-submodule. If W is non-zero, then it contains
a non-zero finite-dimensional submodule (since it is locally finite), and for di-
mension reasons the latter contains an irreducible G-submodule W ′. But then
S ∪ {W ′} is a subset of M whose sum is direct, contradicting maximality of S.
Hence W = 0 and V = U =

⊕
M∈SM , which proves (2).

For the converse, assume (2) and write V as the direct sum
⊕

M∈SM of
irreducible finite-dimensional G-modules. Let U be any submodule of V . Then
the collections of subsets of S whose sum intersects U only in 0 satisfies the
condition of Zorn’s Lemma. Hence there is a maximal such subset S′. Let W
be its sum. We claim that U +W = V (and the sum is direct by construction).
Indeed, if not, then some element M of S is not contained in U +W . But then
M∩(U+V ) = {0} by irreducibility of M and therefore the sum of S′∪{M} still
intersects U trivially, contradicting the maximality of S′. This proves (1).

Remark 4.0.15. It is not hard to prove that direct sums, submodules, and
quotients of locally finite G-modules are again locally finite, and that they are
also completely reducible if the original modules were.

Example 4.0.16. A typical example of a module which is not completely re-
ducible is the following. Let G be the group of invertible upper triangular
2 × 2-matrices, and let V = C2. Then the subspace spanned by the first stan-
dard basis vector e1 is a G-submodule, but it does not have a direct complement
that is G-stable.

Note that the group in this example is infinite. This is not a coincidence, as
the following fundamental results show.

Proposition 4.0.17. Let G be a finite group and let V be a finite-dimensional
G-module. Then there exists a Hermitian inner product (.|.) on V such that
(gu|gv) = (u|v) for all g ∈ G and u, v ∈ V .

Proof. Let (.|.)′ be any Hermitian inner product on V and take

(u|v) :=
∑
g∈G

(gu|gv)′.

Straightforward computations shows that (.|.) is G-invariant, linear in its first
argument, and semilinear in its second argument. For positive definiteness, note
that for v 6= 0 the inner product (v|v) =

∑
g∈G(gv|gv) is positive since every

entry is positive.

Theorem 4.0.18. For a finite group G any G-module is completely reducible.
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Proof. Let V be a G-module. Then every v ∈ V lies in the finite-dimensional
subspace spanned by its orbit Gv = {gv | g ∈ G}, which moreover is G-stable.
Hence V is locally finite. By Zorn’s lemma there exists a submodule U of
V which is maximal among all direct sums of finite-dimensional irreducible
submodules of V . If U is not all of V , then let W be a finite-dimensional
submodule of V not contained in U , and let (.|.) be a G-invariant Hermitian
form on W . Then U ∩ W is a G-submodule of W , and therefore so is the
orthogonal complement (U∩W )⊥ of U∩W in W—indeed, one has (gw|U∩W ) =
(w|g−1(U ∩W )) ⊆ (w|U ∩W ) = {0} for g ∈ G and w ∈ (U ∩W )⊥, so that
gw ∈ (U∩W )⊥. Let W ′ be an irreducible submodule of (U∩W )⊥. Then U⊕W ′
is a larger submodule of V which is the direct sum of irreducible submodules of
V , a contradiction. Hence V = U is completely reducible.

4.1 Schur’s lemma and isotypic decomposition

The following easy observation due to the German mathematician Issai Schur
(1875-1941) is fundamental to representation and invariant theory.

Lemma 4.1.1 (Schur’s Lemma). Let V and U be irreducible finite-dimensional
G modules for some group G. Then either V and U are isomorphic and Hom(V,U)G

is one-dimensional, or they are not isomorphic and Hom(V,U)G = {0}.

Proof. Suppose that Hom(V,U)G contains a non-zero element φ. Then kerφ is
a G-submodule of V unequal to all of V and hence equal to {0}. Also, imφ
is a G-submodule of U unequal to {0}, hence equal to U . It follows that φ
is an isomorphism of G-modules. Now suppose that φ′ is a second element of
Hom(V,U)G. Then ψ := φ′ ◦ φ−1 is a G-morphism from U to itself; let λ ∈ C
be an eigenvalue of it. Then ψ − λI is a G-morphism from U to itself, as well,
and its kernel is a non-zero submodule, hence all of U . This shows that ψ = λI
and therefore φ′ = λφ. Hence Hom(V,U)G is one-dimensional, as claimed.

If G is a group and V is a completely reducible G-module, then the de-
composition of V as a direct sum of irreducible G-modules need not be unique.
For instance, if V is the direct sum U1 ⊕ U2 ⊕ U3 where the first two are iso-
morphic irreducible modules and the third is an irreducible module not iso-
morphic to the other two, then V can also be written as U1 ⊕ ∆ ⊕ U3, where
∆ = {u1 + φ(u1) | u1 ∈ U1} is the diagonal subspace of U1 ⊕ U2 corresponding
to an isomorphism φ from U1 to U2.

However, there is always a coarser decomposition of V into G-modules which
is unique. For this, let {Ui}i∈I be a set of representatives of the isomorphism
classes of G-modules, so that every irreducible finite-dimensional G-module is
isomorphic to Ui for some unique i ∈ I. For every i ∈ I let Vi be the (non-
direct) sum of all G-submodules of V that are isomorphic to Ui. Clearly each
Vi is a G-submodule of V and, since V is a direct sum of irreducible G-modules,∑
i∈I Vi = V . Using Zorn’s lemma one sees that Vi can also be written as⊕
j∈Ji Vij for irreducible submodules Vij , j ∈ Ji that are all isomorphic to Ui.
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We claim that V =
⊕

i∈I Vi. To see this, suppose that Vi0 ∩
∑
i 6=i0 Vi 6= {0}

and let U be an irreducible submodule of this module. Then the projection of
U onto some Vi0,j along the direct sum of the remaining direct summands ov
Vi0 is non-zero, and similarly the projection of U onto Vi1,j for some i1, j along
the remaining summands of Vi1 is non-zero. By Schur’s lemma U is then both
isomorphic to Vi0,j and to Vi1,j , a contradiction. Hence Vi0 ∩

∑
i 6=i0 Vi is zero,

as claimed.
The space Vi is called the isotypic component of V of type Ui, and it has the

following pretty description. The map Hom(Ui, V )G × Ui → V, (φ, u) 7→ φ(u)
is bilinear, and therefore gives rise to a linear map Ψ : Hom(Ui, V )G ⊗Ui → V .
This linear map is a linear isomorphism onto Vi.

Exercise 4.1.2. Let U, V,W be G-modules. Show that Hom(U ⊕ V,W )G ∼=
Hom(U,W )⊕Hom(V,W ) and Hom(W,U ⊕ V ) ∼= Hom(W,U)⊕Hom(W,V ).

4.2 Exercises

Exercise 4.2.1. • Let V be a G-module and 〈, 〉 a G-invariant inner prod-
uct on V . Show that for any two non-isomorphic, irreducible submodules
V1, V2 ⊂ V we have V1 ⊥ V2, that is, 〈v1, v2〉 = 0 for all v1 ∈ V1, v2 ∈ V2.

• Give an example where V1 6⊥ V2 for (isomorphic) irreducible G-modules
V1 and V2.

Exercise 4.2.2. Let the symmetric group on 3 letters S3 act on C[x1, x2, x3]2
by permuting the variables. This action makes C[x1, x2, x3]2 into a S3-module.
Give a decomposition of this module into irreducible submodules.

Exercise 4.2.3. Let G be an abelian group. Show that every irreducible G-
module has dimension 1. Show that G has a faithful irreducible representation
if and only if G is cyclic. A representation ρ is called faithful if it is injective.

Exercise 4.2.4. Let G be a finite group and V an irreducible G-module. Show
that there is a unique G-invariant inner product on V , unique up to multiplica-
tion by scalars.

Exercise 4.2.5. Let G be a finite group, and let CG be the regular represen-
tation of G and let CG = Wm1

1 ⊕ · · · ⊕Wmk
k be the isotypic decomposition of

CG. Show that for every irreducible G-module W , there is an i such that W is
isomorphic to Wi and show that mi = dimWi. Hint: for all w ∈ W the linear
map CG→W given by

∑
g λgg 7→

∑
g λggw is a G-linear map.
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Chapter 5

Finite generation of the
invariant ring

In all examples we have met so far, the invariant ring was generated by a finite
number of invariants. In this section we prove Hilbert’s theorem that under
reasonable conditions, this is always the case. For the proof we will need another
theorem by Hilbert.

Recall that for a ring R and a subset S ⊆ R, the ideal generated by S is
defined as

(S) := {r1s1 + · · ·+ rksk | k ∈ N, r1, . . . , rk ∈ R, s1, . . . , sk ∈ S}. (5.1)

You may want to check that this indeed defines an ideal in R. An ideal I ⊆ R
is called finitely generated if there is a finite set S such that I = (S).

Definition 5.0.6. A ring R is called Noetherian if every ideal I in R is finitely
generated.

Exercise 5.0.7. Show that a ring R is Noetherian if and only if there is no
infinite ascending chain of ideals I1 ( I2 ( I3 ( · · · .

We will be mostly interested in polynomial rings over C in finitely many
indeterminates, for which the following theorem is essential.

Theorem 5.0.8 (Hilbert’s Basis Theorem). The polynomial ring C[x1, . . . , xn]
is Noetherian.

We will deduce this statement from the following result.

Lemma 5.0.9 (Dixon’s Lemma). If m1,m2,m3, . . . is an infinite sequence of
monomials in the variables x1, . . . , xn, then there exist indices i < j such that
mi|mj.

Proof. We proceed by induction on n. For n = 0 all monomials are 1, so we
can take any i < j. Suppose that the statement is true for n − 1 ≥ 0. Define
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the infinite sequences e1 ≤ e2 ≤ . . . and i1 < i2 < . . . as follows: e1 is the
smallest exponent of xn in any of the monomials mi, and i1 is the smallest
index i for which the exponent of xn in mi equals e1. For k > 1 the exponent
ek is the smallest exponent of xn in any of the mi with i > ik−1 and ik is the
smallest index i > ik−1 for which the exponent of xn in mi equals ek. Now the
monomials in the sequence mi1/x

e1
n ,mi2/x

e2
n , . . . do not contain xn. Hence by

induction there exist j < l such that mij/x
ej
n |mil/x

el
n . As ej ≤ el we then also

have mij |mil , and of course ij < il, as claimed.

Proof of Hilbert’s Basis Theorem. Let I ⊆ C[x1, . . . , xn] be an ideal. For any
polynomial f in C[x1, . . . , xn] we denote by lm(f) the leading monomial of f : the
lexicographically largest monomial having non-zero coefficient in f . By Dixon’s
lemma, the set of |-minimal monomials in {lm(f) | f ∈ I} is finite. Hence there
exist finitely many polynomials f1, . . . , fk ∈ I such that for all f ∈ I there exists
an i with lm(fi)|lm(f). We claim that the ideal J := (f1, . . . , fk) generated by
the fi equals I. If not, then take an f ∈ I \J with the lexicographically smallest
leading monomial among all counter examples. Take i such that lm(fi)|lm(f),
say lm(f) = mlm(fi). Subtracting a suitable scalar multiple of mfi, which
lies in J , from f gives a polynomial with a lexicographically smaller leading
monomial, and which is still in I \ J . But this contradicts the minimality of
lm(f).

Remark 5.0.10. More generally, Hilbert showed that for R Noetherian, also
R[x] is Noetherian (which you may want to prove yourself!). Since clearly any
field is a Noetherian ring, this implies the previous theorem by induction on the
number of indeterminates.

With this tool in hand, we can now return to our main theorem of this
section.

Theorem 5.0.11 (Hilbert’s Finiteness Theorem). Let G be a group and let W
be a finite dimensional G-module with the property that C[W ] is completely re-
ducible. Then C[W ]G := {f ∈ C[W ] | gf = f} is a finitely generated subalgebra
of C[W ]. That is, there exist f1, . . . , fk ∈ C[W ]G such that every G-invariant
polynomial on W , is a polynomial in the fi.

The proof uses the so-called Reynolds operator ρ, which is defined as follows.
We assume that the vector space C[W ] is completely reducible. Consider its
isotypic decomposition C[W ] =

⊕
i∈I Vi and let 1 ∈ I correspond to the trivial

1-dimensional G-module, so that C[W ]G = V1. Now let ρ be the projection from
C[W ] onto V1 along the direct sum of all Vi with i 6= 1. This is a G-equivariant
linear map. Moreover, we claim that

ρ(f · h) = f · ρ(h)for all f ∈ V1, (5.2)

where the multiplication is multiplication in C[W ]. Indeed, consider the map
C[W ] → C[W ], h 7→ fh. This a G-module morphism, since g(f · h) = (gf) ·
(gh) = f · (gh), where the first equality reflects that G acts by automorphisms
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on C[W ] and the second equality follows from the invariance of f . Hence if we
write h as

∑
i hi with hi ∈ Vi, then fhi ∈ Vi by Schur’s lemma, and therefore the

component of fh =
∑
i(fhi) in V1 is just fh1. In other words ρ(fh) = fρ(h),

as claimed.

Exercise 5.0.12. Show that for a finite group G, the Reynolds operator is just
f 7→ 1

|G|
∑
g∈G gf .

Proof of Hilbert’s finiteness theorem. Let I ′ :=
⊕

d>0 C[W ]Gd be the ideal in
C[W ]G consisting of all invariants with zero constant term. Denote by I :=
C[W ]I ′ the ideal in C[W ] generated by I ′. Since W is finite dimensional, it
follows from Hilbert’s basis theorem that there exist f1, . . . , fk ∈ I that generate
the ideal I. We may assume that the fi belong to I ′. Indeed, if fi 6∈ I ′, we can
write fi =

∑
j fijgij for certain fij ∈ I ′ and gij ∈ C[W ] and replace fi with the

fij to obtain a finite generating set of I with fewer elements in I \ I ′.
We observe that the ideal I ′ is generated by the fi. Indeed, let h ∈ I ′ ⊆ I

and write h =
∑
i gifi for some gi ∈ C[W ]. Using the Reynolds operator ρ we

find: h = ρ(h) =
∑
i ρ(figi) =

∑
i fiρ(gi).

The proof is now completed by exercise 5.0.13.

Exercise 5.0.13. Let A ⊆ C[W ] be a subalgebra, and let A+ := ⊕d≥1A∩C[W ]d
be the ideal of polynomials in A with zero coefficient. Suppose that the ideal
A+ is finitely generated. Show that A is finitely generated as an algebra over
C.

5.1 Noethers degree bound

For a finite group G, any G-module V is completely reducible as we have seen in
the previous lecture. This implies by Hilbert’s theorem that for finite groups, the
invariant ring is always finitely generated. In this section, we prove a result of
Noether stating that for finite groups G, the invariant ring is already generated
by the invariants of degree at most |G|, which implies a bound on the number
of generators needed.

Theorem 5.1.1 (Noether’s degree bound). Let G be a finite group, and let W
be a (finite dimensional) G-module. Then the invariant ring C[W ]G is generated
by the homogeneous invariants of degree at most |G|.

Proof. We choose a basis x1, . . . , xn of W ∗ so that C[W ] = C[x1, . . . , xn]. For
any n-tuple α = (α1, . . . , αn) of nonnegative integers we have an invariant

jα :=
∑
g∈G

g(xα1
1 · · ·xαnn ) (5.3)

homogeneous of degree |α| := α1 + · · ·+αn. Clearly, the invariants jα span the
vector space C[W ]G, since for any invariant f =

∑
α cαx

α1
1 · · ·xαnn , we have

f =
1
|G|

∑
g∈G

gf =
1
|G|

∑
α

cαjα. (5.4)
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It will therefore suffice to prove that every jα is a polynomial in the jβ with
|β| <= |G|.

Let z1, . . . , zn be n new variables and define for j ∈ N the polynomials

pj(x1, . . . , xn, z1, . . . , zn) :=
∑
g∈G

(gx1 · z1 + · · ·+ gxn · zn)j . (5.5)

So these are the Newton polynomials (see Lecture 2), where we have substi-
tuted the expressions (gx1 · z1 + · · · + gxn · zn) for the |G| variables. Ex-
panding pj and sorting terms with respect to the variables zi, we see that
pj =

∑
|α|=j fαz

α1
1 · · ·xαnn , where

fα =
(

j

α1, . . . , αn

)
jα. (5.6)

Now let j > |G|. Recall that pj is a polynomial in p1, . . . , p|G|. This implies
that also the coefficients fα, |α| = j of pj are polynomials in the coefficients
fβ , |β| ≤ |G| of p1, . . . , p|G|. This finishes the proof, since

(
j

α1,...,αn

)
6= 0 when

α1 + · · ·+ αn = j.

Exercise 5.1.2. Show that for all cyclic groups, the bound in the theorem is
met in some representation.

5.2 Exercises

For a finite group G, define β(G) to be the minimal number m such that for
every (finite dimensional) G-module W , the invariantring C[W ]G is generated
by the invariants of degree at most m. By Noether’s theorem, we always have
β(G) ≤ |G|.

Exercise 5.2.1. Let G be a finite abelian group. We use additive notation.
Define the Davenport constant δ(G) to be the maximum length m of a non-
shortable expression 0 = g1 + · · · + gm, g1, . . . , gm ∈ G. Non-shortable means
that there is no strict non-empty subset I of {1, . . . , n} such that

∑
i∈I gi = 0.

Show that δ(G) = β(G). Compute δ((Z/2Z)n).
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Affine varieties and the
quotient map

6.1 Affine varieties

Definition 6.1.1. An affine variety is a subset of some Cn which is the common
zero set of a collection of polynomials in the coordinates x1, . . . , xn on Cn.

Suppose that S is a subset of C[x] := C[x1, . . . , xn] and let p ∈ Cn be a
common zero of the elements of S. Then any finite combination

∑
i aifi where

the fi are in S and the ai are in C[x] also vanishes on p. The collection of all
such polynomials is the ideal generated by S. So the study of affine varieties
leads naturally to the study of ideals in the polynomial ring C[x1, . . . , xn]. We
have seen in Week 5 that such ideals are always finitely generated.

Exercise 6.1.2. Show that the collection of affine varieties in Cn satisfy the
following three properties:

1. Cn and ∅ are affine varieties;

2. the union of two affine varieties is an affine variety; and

3. the intersection of arbitrarily many affine varieties is an affine variety.

These conditions say that the affine varieties in Cn form the closed subsets in
a topology on Cn. This topology is called the Zariski topology, after the Polish-
American mathematician Otto Zariski (1899-1986). We will interchangeably use
the terms affine (sub)variety in Cn and Zariski-closed subset of Cn. Moreover, in
the last case we will often just say closed subset; when we mean closed subset in
the Euclidean sense rather than in the Zariski-sense, we will explicitly mention
that.

Exercise 6.1.3. The Zariski-topology on Cn is very different from the Eu-
clidean topology on Cn, as the answers to the following problems show:
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1. determine the Zariski-closed subsets of C;

2. prove that Rn is Zariski-dense in Cn (that is, the smallest Zariski-closed
subset of Cn containing Rn is Cn itself); and

3. show that every non-empty Zariski-open subset of Cn (that is, the com-
plement of a Zariski-closed set) is dense in Cn.

On the other hand, in some other aspects the Zariski topology resembles the
Euclidean topology:

1. show that Zariski-open subsets of Cn are also open in the Euclidean topol-
ogy;

2. determine the image of the map φ : C2 → C3, (x1, x2)→ (x1, x1x2, x1(1+
x2)), and show that its Zariski closure coincides with its Euclidean closure.

If you solved the last exercise correctly, then you found that the image is some
Zariski-closed subset minus some Zariski-closed subset plus some other Zariski
closed subset. In general, the subsets of Cn that are generated by the Zariski-
closed sets under (finitely many of) the operations ∪,∩, and complement, are
called constructible sets. An important result due to the French mathematician
Claude Chevalley (1909-1984) says that the image of a constructible set under a
polynomial map Cn → Cm is again a constructible set. Another important fact
is that the Euclidean closure of a constructible set equals its Zariski closure.

From undergraduate courses we know that C is an algebraically closed field,
that is, that every non-constant univariate polynomial f ∈ C[x] has a root. The
following multivariate analogue of this statement is the second major theorem
of Hilbert’s that we will need.

Theorem 6.1.4 (Hilbert’s weak Nullstellensatz). Let I be an ideal in C[x] that
is not equal to all of C[x]. Then there exists a point ξ = (ξ1, . . . , ξn) such that
f(ξ) = 0 for all f ∈ I.

The theorem is also true with C replaced by any other algebraically closed
field. But we will give a self-contained proof that uses the fact that C is not
countable.

Lemma 6.1.5. Let U, V be vector spaces over C of countably infinite dimension,
let A(x) : U⊗C[x]→ V ⊗C[x] be a C[x]-linear map, and let v(x) ∈ V ⊗C[x] be a
target vector. Suppose that for all ξ ∈ C there is a u ∈ U such that A(ξ)u = v(ξ).
Then there exists a u(x) ∈ U ⊗ C(x) such that Au(x) = v(x).

Proof. Suppose, on the contrary, that no such u(x) exists. This means that
the image under A(x) of the C(x)-vector space U ⊗ C(x) does not contain
v(x). Let F (x) be a C(x)-linear function on V ⊗ C(x) taking the value 0 on
A(U ⊗ C(x)) and 1 on v(x); such a function exists and is determined by its
values f1(x), f2(x), f3(x), . . . ∈ C(x) on a C-basis v1, v2, v3, . . . of V . Since C
is uncountable there is a value ξ ∈ C where all fi are defined, so that F (ξ)
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is a well-defined linear function on V . Now we have F (ξ)A(ξ)u = 0 for all
u ∈ U but F (ξ)v(ξ) = 1, contradicting the assumption that A(ξ)u = v(ξ) has a
solution.

Proof of the weak Nullstellensatz. We proceed by induction on n. For n = 0
the statement is just that any proper ideal of C is 0. Now suppose that n >
0 and that the statement is true for n − 1. By Hilbert’s basis theorem, the
ideal I is generated by finitely many polynomials f1, . . . , fk. If there exists a
value ξ ∈ C for xn such that the ideal in C[x1, . . . , xn−1] generated by f1,ξ :=
f1(x1, . . . , xn−1, ξ), . . . , fk,ξ := (x1, . . . , xn−1, ξ) does not contain 1, then we can
use the induction hypothesis and we are done. Suppose therefore that no such
ξ exists, that is, that 1 can be written as a C[x1, . . . , xn−1]-linear combination

1 =
∑
j

cj,ξfj,ξ

for every ξ ∈ C. We will use this fact in two ways. First, note that this means
that ∑

j

cj,ξfj = 1 + (xn − ξ)gξ

for some polynomial gξ ∈ C[x1, . . . , xn]. Put differently, (xn − ξ) has a multi-
plicative inverse modulo the ideal I for each ξ ∈ C. But then every univariate
polynomial in xn, being a product of linear ones since C is algebraically closed,
has such a multiplicative inverse. Since 1 does not lie in I, this implies that
I ∩ C[xn] = {0}.

Second, by Lemma 6.1.5 applied to U = C[x1, . . . , xn−1]k, V = C[x1, . . . , xn−1],
x = xn, and A(c1, . . . , ck) =

∑k
i=1 cjfj , we can write

1 =
k∑
i=1

cj(xn)fj ,

where each cj(xn) lies in C[x1, . . . , xn−1](xn). Letting D(xn) ∈ C[xn] \ 0 be a
common denominator of the cj and setting c′j := Dcj ∈ C[x1, . . . , xn], we find
that

D(xn) =
k∑
i=1

c′jfj ∈ I.

But this contradicts our earlier conclusion that I does not contain non-zero
polynomials in xn only.

The Nulstellensatz has many applications to combinatorial problems.

Exercise 6.1.6. Let G = (V,E) be a finite, undirected graph with vertex set
V and edge set E ⊆

(
V
2

)
. A proper k-colouring of G is a map c : V → [k]

with the property that c(i) 6= c(j) whenever {i, j} ∈ E. To G we associate
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the polynomial ring C[xi | i ∈ V ] and its ideal I generated by the following
polynomials:

xki − 1 for all i ∈ V ; and xk−1
i + xk−2

i xj + . . .+ xk−1
j for all {i, j} ∈ E.

Prove that G has a proper k-colouring if and only if 1 6∈ I.

Two important maps set up a beautiful duality between geometry and alge-
bra. First, we have the map V that sends a subset S ⊆ C[x] to the variety V(S)
that it defines; and second, the map I that sends a subset X ⊆ Cn to the ideal
I(X) ⊆ C[x] of all polynomials that vanish on all points in X. The following
properties are straightforward:

1. if S ⊆ S′ then V(S) ⊇ V(S′);

2. if X ⊆ X ′ then I(X) ⊇ I(X ′);

3. X ⊆ V(I(X));

4. S ⊆ I(V(S));

5. V(I(V(S))) = V(S); and

6. I(V(I(X))) = I(X).

For instance, in (5) the containment ⊇ follows from (3) applied to X = V(S)
and the containment ⊆ follows from (4) applied to S and then (1) applied to
S ⊆ S′ := I(V(S)).

This shows that V and I set up an inclusion-reversing bijection between sets
of the form V(S) ⊆ Cn—that is, affine varieties in Cn—and sets of the form
I(X) ⊆ C[x]. Sets of the latter form are always ideals, but not all ideals are of
this form, as the following example shows.

Example 6.1.7. Suppose that n = 1, fix a natural number k, and let Ik be
the ideal in C[x1] generated by xk1 . Then V(I) = {0} and I(V(I)) is the ideal
generated by x1. So for k > 1 the ideal Ik is not of the form I(X) for any subset
of Cn.

This example exhibits a necessary condition for an ideal to be of the form
I(X) for some set X—it must be radical.

Definition 6.1.8. The radical of an ideal I ⊆ C[x] is the set of all polynomials
f of which some positive power lies in I; it is denoted

√
I. The ideal I is called

radical if I =
√
I.

Indeed, suppose that I = I(X) and suppose that f ∈ C[x] has fk ∈ I
for some k > 0. Then fk vanishes on X and hence so does f , and hence
f ∈ I(X) = I. This shows that I is radical.

Exercise 6.1.9. Show that, for general ideals I,
√
I is an ideal containing I.
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The second important result of Hilbert’s that we will need is that the con-
dition that I be radical is also sufficient for I to be the vanishing ideal of some
set X.

Theorem 6.1.10 (Hilbert’s Nullstellensatz). Suppose that I ⊆ C[x] is a radical
ideal. Then I(V(I)) = I.

Proof. This follows from the weak Nullstellensatz using Rabinowitsch’s trick
from 1929. Let g be a polynomial vanishing on all common roots of the polyno-
mials in I. Introducing an auxilliary variable t, we have that the ideal in C[x, t]
generated by I and tg−1 does not have any common zeroes. Hence by the weak
Nullstellensatz 1 can be written as

1 = a(tg − 1) +
k∑
i=1

cj(x, t)fj , a, cj ∈ C[x, t], fj ∈ I.

Replacing t on both sides by 1/g we have

1 =
∑
j

cj(x, 1/g)fj .

Multiplying both sides with a suitable power gd eliminates g from the denom-
inators and hence expresses gd as a C[x]-linear combination of the fj . Hence
gd ∈ I and therefore f ∈ I since I is radical.

We have thus set up an inclusion-reversing bijection between closed subsets
of Cn and radical ideals in C[x]. It is instructive to see what this bijection does
with the smallest closed subsets consisting of a single point p = (p1, . . . , pn) ∈
Cn. The ideal I(p) := I({p}) of polynomials vanishing on p is generated by
x1 − p1, . . . , xn − pn (check this). This is a maximal ideal (that is, an ideal
which is maximal among the proper ideals of C[x1, . . . , xn]), since the quotient
by it is the field C. This follows from the fact that, by definition, I is the
kernel of the homomorphism of C-algebras C[x1, . . . , xn] → C, f 7→ f(p) and
that this homomorphism is surjective. Conversely, suppose that I is a maximal
ideal. Then it is radical—indeed, if the radical were strictly larger than I, it
would contain 1 by maximality, but then some power of 1 would be in I, a
contradiction. Hence by the Nullstellensatz there exists a non-empty subset X
of Cn such that I = I(X). But then for any point p in X we have that I(p)
is a radical ideal containing I, hence equal to I by maximality. We have thus
proved the following corollary of the Nullstellensatz.

Corollary 6.1.11. The map sending p to I(p) is a bijection between points in
Cn and maximal ideals in C[x].

6.2 Regular functions and maps

Definition 6.2.1. Let X be an affine variety in Cn. Then a regular function
on X is by definition a C-valued function of the form f |X where f ∈ C[x].
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Regular functions form a commutative C-algebra with 1, denoted C[X] (or
sometimes O(X)) and sometimes called the coordinate ring of X. By definition,
C[X] is the image of the restriction map C[x]→ {C−valued functions on X}, f 7→
f |X . Hence it is isomorphic to the quotient algebra C[x]/I(X).

Example 6.2.2. 1. If X is a d-dimensional subspace of Cn, then I(X) is
generated by the space X0 ⊆ (Cn)∗ of linear functions vanishing on X. If
y1, . . . , yd ∈ (Cn)∗ span a vector space complement of X0, then modulo
I(X) every polynomial in the xi is equal to a unique polynomial in the yj .
This shows that C[X] = C[y1, . . . , yd] is a polynomial ring in d variables.
In terminology to be introduced below, X is isomorphic to the variety Cd.

2. Consider the variety X of (m+ 1)× (m+ 1)-matrices of the shape[
x 0
0 y

]
with x an m×m-matrix and y a complex number satisfying det(x)y = 1.
Then C[X] = C[(xij)ij , y]/(det(x)y − 1). The map y 7→ 1/ det(x) sets up
an isomorphism of this algebra with the algebra of rational functions in the
variables xij generated by the xij and 1/det(x). We therefore also write
C[X] = C[(xij)ij , 1/det(x)]. Note thatX is a group with respect to matrix
multiplication, isomorphic to GLn. This is the fundamental example of
an algebraic group; here algebraic refers to the variety structure of X.

3. Consider the variety X = M≤lk,m of all k × m-matrices all of whose (l +
1)× (l+ 1)-minors (that is, determinants of (l+ 1)× (l+ 1)-submatrices)
vanish. Elementary linear algebra shows that X consists of all matrices of
rank at most l, and that such matrices can always be written as AB with
A ∈Mk,l, B ∈Ml,m.

Remark 6.2.3. In these notes a C-algebra is always a vector space A over C
together with an associative, bilinear multiplication A × A → A, such that A
contains an element 1 for which 1a = a = a1 for all a ∈ A. A homomorphism
from A to a C-algebra B is a C-linear map φ : A → B satisfying φ(1) = 1 and
φ(a1a2) = φ(a1)φ(a2) for all a1, a2 ∈ A. Most algebras that we will encounter
are commutative.

Just like group homomorphisms are the natural maps between groups and
continuous maps are the natural maps between topological spaces, regular maps
are the natural maps between affine varieties.

Definition 6.2.4. A regular map from an affine variety X to Cm is a map
φ : X → Cm of the form φ : x 7→ (f1(x), . . . , fm(x)) with f1, . . . , fm regular
functions on X. If Y ⊆ Cm is an affine variety containing the image of φ, then
we also call φ a regular map from X to Y .

Exercise 6.2.5. If ψ is a regular map from Y to a third affine variety Z, then
ψ ◦ φ is a regular map from X to Z.
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Lemma 6.2.6. If X ⊆ Cn and Y ⊆ Cm are affine varieties, and if φ : X → Y
is a regular map, then the map φ∗ : f 7→ f ◦φ is a homomorphism of C-algebras
from C[Y ] C[X].

Proof. Suppose that φ is given by regular functions (f1, . . . , fm) on X. Then
φ∗ sends the regular function h|Y ∈ C[Y ], where h is a polynomial in the
coordinates y1, . . . , ym on Cm, to the function h(f1, . . . , fm), which is clearly a
regular function on C[X]. This shows that φ∗ maps C[Y ] to C[X]. One readily
verifies that φ∗ is an algebra homomorphism.

Note that if ψ : Y → Z is a second regular map, then φ∗ ◦ ψ∗ = (ψ ◦ φ)∗.

Definition 6.2.7. If X ⊆ Cn and Y ⊆ Cm are affine varieties, then an isomor-
phism from X to Y is a regular map whose inverse is also a regular map. The
varieties X and Y are called isomorphic if there is an isomorphism from X to
Y .

Lemma 6.2.8. If X ⊆ Cn and Y ⊆ Cm are isomorphic varieties, then C[X]
and C[Y ] are isomorphic C-algebras.

Proof. If φ : X → Y, ψ : Y → X are a regular maps such that ψ ◦ φ = idX
and φ ◦ ψ = idY , then φ∗ ◦ ψ∗ = idC[X] and ψ∗ ◦ φ∗ = idC[Y ], hence these two
algebras are isomorphic.

Example 6.2.9. The affine variety X = C1 and the affine variety Y = {(x, y) ∈
C2 | y−x2 = 0} are isomorphic, as the regular maps φ : X → Y, t 7→ (t, t2) and
ψ : Y → X, (x, y) 7→ x show.

Exercise 6.2.10. Prove that X = C1 is not isomorphic to the variety Z =
{(x, y) ∈ C2 | xy − 1 = 0}.

6.3 The quotient map

Let G be a group and let W be a finite-dimensional G-module such that C[W ] =⊕
SkW ∗ is a completely reducible G-module. By Hilbert’s finiteness theorem,

we know that the algebra C[W ]G of G-invariant polynomials is a finitely gener-
ated algebra. Let f1, . . . , fk be a generating set of this algebra. Then we have
a polynomial map

π : W → Ck, w 7→ (f1(w), . . . , fk(w)).

This map is called the quotient map, because in some sense, which will become
clear below, the image of this map parameterises G-orbits in W .

Example 6.3.1. Take G := {−1, 1} with its action on W := C2 where −1 sends
(x, y) to (−x,−y). The invariant ring C[W ]G is generated by the polynomials
f1 := x2, f2 := xy, f3 := y2 (check this). Thus the quotient map is π : C2 →
C3, (x, y) 7→ (x2, xy, y2). Let u, v, w be the standard coordinates on C3, and



42 CHAPTER 6. AFFINE VARIETIES AND THE QUOTIENT MAP

note that the image of π is contained in the affine variety Z ⊆ C3 with equation
v2 − uw. Indeed, π is surjective onto Z: let u, v, w be complex numbers such
that v2 = uw. Let x ∈ C be a square root of u. If x 6= 0, then set y := v/x so
that v = xy and w = v2/u = x2y2/x2 = y2. If x = 0, then let y be a square
root of w. In both cases π(x, y) = (u, v, w). Note that the fibres of π over every
point (u, v, w) are orbits of G.

Example 6.3.2. Take G := Sn with its standard action on W := Cn. Recall
that the invariants are generated by the elementary symmetric polynomials
σ1(x) =

∑
i xi, . . . , σn(x) =

∏
i xi. This gives the quotient map

π : Cn → Cn, (x1, . . . , xn) 7→ (σ1(x), . . . , σn(x)).

We claim that the image of this map is all of Cn. Indeed, for any n-tuple
(c1, . . . , cn) ∈ Cn consider the polynomial

f(t) := tn − c1tn−1 + . . .+ (−1)ncn.

As C is algebraically closed, this polynomial has n roots (counted with multi-
plicities), so that we can also write

f(t) = (t− x1) · · · (t− xn);

expanding this expression for f and comparing with the above gives π(x1, . . . , xn) =
(c1, . . . , cn). Note furthermore that any other n-tuple (x′1, . . . , x

′
n) with this

property is necessarily some permutation of the xi, since the roots of f are
determined by (c1, . . . , cn).

This means that we can think of π : Cn → Cn as follows: every Sn-orbit
on the first copy of Cn is “collapsed” by π to a single point on the second copy
of Cn, and conversely, the fibre of π above any point in the second copy of Cn
consists of a single Sn-orbit. Thus the second copy of Cn parameterises Sn-orbits
on Cn.

Example 6.3.3. Let the group G := SL2 act on the W := M2(C) of 2 × 2-
matrices by left multiplication. If A has rank 2, then left-multiplying by a
suitable g ∈ SL2 gives

gA =
[
1 0
0 det(A)

]
.

Now det is a polynomial on M2(C) which is SL2-invariant. We claim that it
generates the invariant ring. Indeed, suppose f ∈ C[a11, a12, a21, a22] is any
invariant. Then for A of rank two we find that

f(A) = f(gA) = f(1, 0, 0,det(A)) =: h(detA)

where h is a polynomial in 1 variable. Since both f and h are continous, and
since the rank-two matrices are dense in M2, we find that this equality actually
holds for all matrices. Hence f(A) = h(detA) for all A, so f is in the algebra
generated by det.
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In this case the quotient map π : M2(C) → C is just the map A 7→ det(A).
The fibre above a point d ∈ C∗ is just the set of 2× 2-matrices of determinant
d, which is a Zariski-closed set and a single SL2-orbit. The fibre above 0 ∈ C is
the set of all matrices of rank ≤ 1. This is, of course, also a Zariski closed set,
but not a single orbit—indeed, it consists of the closed orbit consisting of the
zero matrix and the non-closed orbit consisting of all matrices of rank 1. Note
that the latter orbit has 0 in its closure.

These two examples illustrate the general situation: for finite G the fibres
of the quotient map are precisely the orbits of G, while for infinite G they are
certain G-stable closed sets.

Theorem 6.3.4. Let Z denote the Zariski closure of π(W ), that is, the set of
all points in Cm that satisfy all polynomial relations that are satisfied by the
invariants f1, . . . , fk. The quotient map π has the following properties:

1. π(gw) = π(w) for all g ∈ G, w ∈W ;

2. the fibres of π are G-stable, Zariski-closed subsets of W ;

3. for any regular (polynomial) map ψ : W → Cm that satisfies ψ(gw) =
ψ(w) for all g ∈ G there exists a unique regular map φ : Z 7→ Cm such
that φ ◦ π = ψ.

4. π is surjective onto Z;

Proof. 1. π(gw) = (f1(gw), . . . , fk(gw)) = (f1(w), . . . , fk(w)) because the fi
are invariant.

2. If w ∈ π−1(z), then π(gw) = π(w) = z, so gw ∈ π−1(z).

3. Let y1, . . . , ym be the standard coordinates on Cm. Then yi ◦ ψ is a G-
invariant polynomial on W for all i. As the fj generate these polynomials,
we may write yi ◦ ψ as gi(f1, . . . , fk) for some k-variate polynomial gi.
Now the regular map φ : Z 7→ U, z 7→ (g1(z), . . . , gm(z)) has the required
property. Notice that the gi need not be unique. However, the map
Z → Cm with the required property is unique: if φ1, φ2 both have the
property, then necessarily φ1(π(w)) = φ2(π(w)) = ψ(w) for all w ∈ W ,
so that φ1 and φ2 agree on the subset imπ of Z. Since Z is the Zariski
closure of this set, φ1 and φ2 need to agree everywhere. (In fact Z = imπ
as we will see shortly.)

4. Let z ∈ Z. This means that the coordinates of z satisfy all polynomial
relations satisfied by f1, . . . , fk, hence there exists a homomorphism φ :
C[W ]G = C[f1, . . . , fk] → C of C-algebras sending fi to zi. The kernel
of this homomorphism is a maximal ideal Mz in C[W ]G. We claim that
there exists a maximal ideal M ′ in C[W ] whose intersection with C[W ]G

is Mz. Indeed, let I be the ideal in C[W ] generated by Mz. We only need
to show that I 6= C[W ]; then the axiom of choice implies the existence of
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a maximal ideal containing I. Suppose, on the contrary, that I 3 1, and
write

1 =
l∑
i=1

aihi with all ai ∈ C[W ], hi ∈Mz.

Since C[W ] is completely reducible as a G-module, there exists a Reynolds
operator ρ. Applying ρ to both sides of the equality yields

1 =
l∑
i=1

ρ(ai)hi,

where the ρ(ai) are in C[W ]G. But this means that 1 lies in Mz, a contra-
diction to the maximality of the latter ideal. This proves the claim that
such an M ′ exists. The maximal ideal M ′ is the kernel of evaluation at
some point w ∈ W by the discussion of maximal ideals after the Null-
stellensatz. Thus we have found a point w ∈ W with the property that
evaluating fi at w gives zi. Thus π(w) = z and we are done.

Remark 6.3.5. By (3) Z is independent of the choice of generators of C[W ]G

in the following sense: any other choice of generators of CG yields a variety Z ′

with a G-invariant map π′ : W → Z ′, and (3) shows that there exist regular
maps φ : Z → Z ′ and φ′ : Z ′ → Z such that φ ◦ φ′ = idZ and φ′ ◦ φ = idZ′ .

Exercise 6.3.6. LetG = C∗ act onW = C4 by t(x1, x2, y1, y2) = (tx1, tx2, t
−1y1, t

−1y2).

1. Find generators f1, . . . , fk of the invariant ring C[W ]G.

2. Determine the image Z of the quotient map π : W → Ck, w 7→ (f1(w), . . . , fk(w)).

3. For every z ∈ Z determine the fibre π−1(z).
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The null-cone

Let G be a group and let W be a finite-dimensional G-module. We have seen
in Example 6.3.3 that G-orbits on W cannot always be separated by invariant
polynomials on W . Here is another example of this phenomenon.

Example 7.0.7. Let G = GLn(C) act on W = Mn(C) by conjugation. We
have seen in week 1 that the invariant ring is generated by the coefficients of
the characteristic polynomial χ. This means that the map π sending A to χA
is the quotient map. By exercise 1.5.5 each fibre π−1(p) of π, where p is a
monic univariate polynomial of degree n, contains a unique conjugacy class of
diagonalisable matrices. This conjugacy class is in fact Zariski closed, since it
is given by the additional set of equations

(A− λ1) · · · (A− λk) = 0

where λ1, . . . , λk are the distinct eigenvalues of p. We claim that all other (non-
diagonalisable) conjugacy classes are not Zariski closed. Indeed, if A is not
diagonalisable, then after a conjugation we may assume that A is of the form
D+N with D diagonal and N strictly upper triangular (e.g., move A to Jordan
normal form). Conjugating A = D + N with a diagonal matrix of the form
diag(tn−1, . . . , t0), t ∈ C∗ multiplies the (i, j)-entry of A with tj−i. Hence for
i ≥ j the entries of A do not change, while for i < j they are multiplied by
a positive power of t. Letting t tend to 0 we find that the result tends to D.
Hence D lies in the Euclidean closure of the conjugacy class of A, hence also in
the Zariski closure.

Note in particular the case where D = 0, i.e., where A is nilpotent. Then the
characteristic polynomial of A is just xn, i.e., all invariants with zero constant
term vanish on A, and the argument above shows that 0 lies in the closure of
the orbit of A. This turns out to be a general phenomenon.

Definition 7.0.8. The null-cone NW of the G-module W is the set of all vectors
w ∈W on which all G-invariant polynomials with zero constant term vanish.
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Thus, the null-cone of the module Mn(C) with the conjugation action of
GLn(C) on Mn(C) consists of all nilpotent matrices, and the null-cone of the
module Mn(C) with the action of SLn(C) by left multiplication consists of all
singular matrices.

Exercise 7.0.9. Check the second statement by verifying that the invariant
ring is generated by det.

Remark 7.0.10. Suppose that the invariant ring C[W ]G is generated by finitely
many invariant functions f1, . . . , fk, each with zero constant term. Let π be the
corresponding quotient map W → Ck. Prove that the null-cone NW is just the
fibre π−1(0) above 0 ∈ Ck.

Exercise 7.0.11. Show that if G is finite, then the null-cone consists of 0 alone.

We want to describe the structure of the null-cone for one class of groups,
namely, tori. The resulting structure theorem actually carries over mutatis
mutandis to general semisimple algebraic groups, and we will see some examples
of that fact later.

Definition 7.0.12. The n-dimensional torus Tn is the group (C∗)n.

For any n-tuple α = (a1, . . . , an) ∈ Zn we have a homomorphism

ρα : Tn → C∗, t = (t1, . . . , tn) 7→ tα := ta1
1 · · · tann ,

and hence a one-dimensional representation of Tn. Let W be a finite direct
sum of m such one-dimensional representations of Tn, so W is determined by a
sequence A = (α1, . . . , αm) of lattice points in Zn (possibly with multiplicities).
Relative to a basis consisting of one vector for each αi, the representation Tn →
GL(W ) is just the matrix representation

t 7→

t
α1

. . .
tαm

 .
We think of αi = (ai1, . . . , ain) as the i-th row of the m × n-matrix A. Let
x = (x1, . . . , xm) denote the corresponding coordinate functions on W . Then
(t1, . . . , tn) acts on the variable xi by

∏n
j=1 t

−ai,j
j —recall that the action on func-

tions involves taking an inverse of the group element—and hence on a monomial
xu, u ∈ Nm by

m∏
i=1

n∏
j=1

t
−uiai,j
j =

n∏
j=1

t
(−uA)j
j ,

where uA is the row vector obtained by left-multiplying A by u. This implies
two things: first, all monomials appearing in any Tn-invariant polynomial on
W are themselves invariant, so that C[W ]Tn is spanned by monomials in the
xi, and second, the monomial xu is invariant if and only if uA = 0.
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Definition 7.0.13. For w ∈ W let supp(w), the support of w, be the set of
αi ∈ Zn for which xi(w) 6= 0.

Theorem 7.0.14. The null-cone of the Tn-module W consists of all vectors w
such that 0 does not lie in the convex hull of supp(w) ⊆ Zn ⊆ Rn.

Proof. Suppose first that 0 does not lie in that convex hull. Then there exists
a vector β = (b1, . . . , bn) ∈ Zn such that β · α > 0 for all α ∈ supp(w); here · is
the dot product. This means that the vector

λ(t) = (tb1 , . . . , tbn), t ∈ C∗

acts by a strictly positive power of t on all non-zero components of w. Hence
for t → 0 the vector λ(t)w tends to 0. Hence each Tn-invariant polynomial f
on W satisfies

f(w) = f(λ(t)w)→ f(0), t→ 0;

here the equality follows from the fact that f is invariant and the limit follows
from the fact that f is continuous. Hence w is in the null-cone NV .

Conversely, suppose that 0 lies in the convex hull of the support of w. Then
we may write 0 as u1α1 + . . . + umαm where the ui are natural numbers and
not all zero and where ui > 0 implies that αi lies in the support of w. Then
uA = 0, so xu is a non-constant invariant monomial, which moreover does not
vanish on w since the only variables xi appearing in it have xi(w) 6= 0. Hence
w does not lie in the null-cone of Tn on W .

Exercise 7.0.15. Let T be the group of invertible diagonal n×n-matrices, and
let T act on Mn(C) by conjugation, that is,

t ·A := tAt−1, t ∈ T, A ∈Mn(C).

Prove that A lies in the null-cone of T on Mn(C) if and only if there exists a
permutation matrix P such that PAP−1 is strictly upper triangular.

Exercise 7.0.16. Let T be the group of diagonal 3× 3-matrices with determi-
nant 1. Let U = C3 be the standard T -module with action

diag(t1, t2, t3)(x1, x2, x3) := (t1x1, t2x2, t3x3),

and consider the 9-dimensional T -module W = U⊗2.

1. Show that T ∼= T2.

2. Determine the irreducible T -submodules of W .

3. Draw the vectors αi forW in the plane, and determine all possible supports
of vectors in the null-cone of T on W .
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Exercise 7.0.17. Let G be the group SL2(C) acting on the space U = C2 and
let W be the space S2U with the standard action of G given by[
a b
c d

]
(x11e

2
1+x12e1e2+x22e

2
2) = x11(ae1+ce2)2+x12(ae1+ce2)(be1+de2)+x22(be1+de2)2,

where e1, e2 are the standard basis of C2.

1. Determine the invariant ring C[W ]G.

2. Determine the fibres of the quotient map.

3. Determine the null-cone.



Chapter 8

Molien’s theorem and
self-dual codes

Let W
⊕∞

d=0Wd be a direct sum of finite dimensional (complex) vector spaces
Wd. The Hilbert series (or Poincaré series) H(W, t) is the formal power series
in t defined by

H(V, t) :=
∞∑
d=0

dim(Vd)td, (8.1)

and encodes in a convenient way the dimensions of the vector spaces Wd. In
this lecture, W will usually be the vector space C[V ]G of polynomial invariants
with respect to the action of a group G, where Wd is the subspace of invariants
homogeneous of degree d.

Example 8.0.18. Taking the polynomial ring in one variable, the Hilbert series
is given by H(C[x], t) = 1 + t + t2 + · · · = 1

1−t . Similarly, H(C[x1, . . . , xn]) =
1

(1−t)n .

Exercise 8.0.19. Let f1, . . . , fk ∈ C[x1, . . . , xn] be algebraically independent
homogeneous polynomials, where fi has degree di. Show that the Hilbert series
of the subalgebra generated by the fi is given by

H(C[f1, . . . , fk], t) =
1∏k

i=1(1− tdi)
. (8.2)

Example 8.0.20. Consider the action of the group G of order 3 on C[x, y]
induced by the linear map x 7→ ζ3x, y 7→ ζ−1

3 y, where ζ3 is a third root of unity.
Clearly, x3, y3 and xy are invariants and C[x, y]G = C[x3, y3, xy]. In fact, x3

and y3 are algebraically independent, and

C[x, y]G = C[x3, y3]⊕ C[x3, y3]xy ⊕ C[x3, y3](xy)2. (8.3)

Since H(C[x3, y3], t) = 1
(1−t3)2 , we obtain H(C[x, y]G, t) = 1+t2+t4

(1−t3)2 .

Exercise 8.0.21. Compute the Hilbert series of C[x2, y2, xy].

49
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8.1 Molien’s theorem

For finite groups G, it is possible to compute the Hilbert series directly, without
prior knowlegde about the generators. This is captured in the following beautiful
theorem of Molien.

Theorem 8.1.1 (Molien’s Theorem). Let ρ : G → GL(V ) be a representation
of a finite group on a finite dimensional vector space V . Then the Hilbert series
is given by

H(C[V ]G, t) =
1
|G|

∑
g∈G

1
det(I − ρ(g)t)

. (8.4)

Proof. Consider the action of G on C[V ] induced by the representation ρ. De-
note for g ∈ G and d ∈ N by Ld(g) ∈ GL(C[V ]d) the linear map correspond-
ing to the action of g ∈ G on the homogeneous polynomials of degree d. So
L1(g) = ρ∗(g).

The linear map πd := 1
|G|
∑
g∈G Ld(g) is a projection onto C[V ]Gd . That is,

πd(p) ∈ C[V ]Gd for all p ∈ C[V ]d and πd is the identity on C[V ]Gd . It follows that
tr(πd) = dim(C[V ]Gd ). This gives:

H(C[V ]G, t) =
1
|G|

∑
g∈G

∞∑
d=0

tr(Ld(g)). (8.5)

Now lets fix an element g ∈ G and compute the inner sum
∑∞
d=0 tr(Ld(g)).

Pick a basis x1, . . . , xn of V ∗ that is a system of eigenvectors for L1(g), say
L1(g)xi = λixi. Then the monomials in x1, . . . , xn of degree d for a system of
eigenvectors of Ld(g) with eigenvalues given by:

Ld(g) · xd11 · · ·xdnn = λd11 · · ·λdnn · x
d1
1 · · ·xdnn (8.6)

for all d1 + · · ·+ dn = d. It follows that
∞∑
d=0

tdtr(Ld(g)) = (1 + λ1t+ λ2
1t

2 + · · · ) · · · (1 + λnt+ λnt
2 + · · · )

=
1

1− λ1t
· · · 1

1− λnt
=

1
det(I − L1(g)t)

. (8.7)

Using the fact that for every g the equality det(I−L1(g)t) = det(I−ρ(g−1)t)
holds and combining equations (8.5) and (8.7), we arrive at

H(C[V ]G, t) =
1
|G|

∑
g∈G

∞∑
d=0

tr(Ld(g))

=
1
|G|

∑
g∈G

1
det(I − ρ(g−1)t)

=
1
|G|

∑
g∈G

1
det(I − ρ(g)t

, (8.8)
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where the last equality follows by changing the order in which we sum over G.
This completes the proof.

Exercise 8.1.2. Let U ⊂ V be finite dimensional vector spaces and let π : V →
U be the identity on U . Show that tr(π) = dim(U). Hint: write π as a matrix
with respect to a convenient basis.

Example 8.1.3. Consider again the action of the group G = Z/3Z on C[x, y]
induced by the linear map x 7→ ζx, y 7→ ζ−1y, where ζ is a third root of unity.
Using Molien’s theorem, we find

H(C[x, y]G, t) =
1
3

(
1

(1− t)(1− t)
+

1
(1− ζt)(1− ζ2t)

+
1

(1− ζ2t)(1− ζt)

)
.

(8.9)
A little algebraic manipulation and the fact that (1− ζt)(1− ζ2t) = (1 + t+ t2)
shows this to be equal to

(1− t+ t2)(1 + t+ t2)
(1− t)2(1− ζt)2(1− ζ2t)2

=
1 + t2 + t4

(1− t3)2
. (8.10)

Since this is equal to the Hilbert series of C[x3, y3, xy], we obtain as a by-
product that the invariant ring is indeed generated by the three invariants x3,
y3 and xy.

Exercise 8.1.4. Let G be the matrix group generated by A,B ∈ GL2(C) given
by

A :=
(
i 0
0 −i

)
, B :=

(
0 1
−1 0

)
. (8.11)

• Use Molien’s theorem to prove that the Hilbert series of C[x, y]G is given
by H(C[x, y]G, t) = 1+t6

(1−t4)2 .

• Find algebraically independent invariants f1, f2 of degree 4 and a third
invariant f3 of degree 6, such that C[x, y]G = C[f1, f2]⊕ C[f1, f2]f3.

8.2 Linear codes

A linear code is a linear subspace C ⊆ Fnq , where Fq is the field of q elements.
The number n is called the length of the code. In the following, we will only
consider binary codes, that is, q = 2. The weight w(u) of a word u ∈ Fn2 is the
number of nonzero positions in u, that is, w(u) := |{i | ui = 1}|. The Hamming
distance d(u, v) between two words is defined as the number of positions in
which u and v, differ: d(u, v) = w(u− v).

A code C ⊆ Fn2 is called an [n, k, d]-code if the dimension of C is equal to
k and the smallest Hamming distance between two distinct codewords is equal
to d. In the setting of error correcting codes, messages are transmitted using
words from the set of 2k codewords. If at most (d− 1)/2 errors are introduced
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(by noise) into a codeword, the original can still be recovered by finding the
word in C at minimum distance from the distorted word. The higher d, the
more errors can be corrected and the higher k, the higher the information rate.

Much information about a code, including the parameters d and k, can be
read of from its weight enumerator WC . This is the polynomial in x, y and
homogeneous of degree n, defined by

WC(x, y) :=
n∑
i=0

Aiy
ixn−i, Ai := |{u ∈ C | w(u) = i}|. (8.12)

Observe that the coefficient of xn in WC is always equal to 1, since C contains
the zero word. The number 2k of codewords equals the sum of the coefficients
A0, . . . , An and d is the smallest positive index i for which Ai > 0.

For a code C ⊆ Fn2 , the dual code C⊥ is defined by

C⊥ := {u ∈ Fn2 | u · c = 0 for all c ∈ C}, where u · c := u1c1 + · · ·+ uncn.
(8.13)

Exercise 8.2.1. Check that the dimensions of a code C ⊆ Fn2 and its dual C⊥

sum to n.

The MacWilliams identity relates the weight enumerator of a code C and
that of its dual C⊥.

Proposition 8.2.2. Let C ⊆ Fn2 be a code. The weight enumerator of C⊥

satisfies

WC⊥(x, y) =
1
|C|

WC(x+ y, x− y). (8.14)

Exercise 8.2.3. Prove the MacWilliams identity. Hint: let

f(u) :=
∑
v∈Fn2

xn−w(v)yw(v)(−1)u·v, (8.15)

and compute
∑
c∈C f(c) in two ways.

A code is called self-dual if C = C⊥. This implies that n is even and the
dimension of C equals n/2. Furhermore, we have for every c ∈ C that c · c = 0
so that w(c) is even. If every word in C has weight divisible by 4, the code is
called even.

Exercise 8.2.4. An example of an even self-dual code is the extended Hamming
code spanned by the rows of the matrix

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1

 . (8.16)
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That this code is self-dual follows from the fact that it has dimension 4 and any
two rows of the given matrix have dot product equal to 0. To see that it is an
even code, observe that the rows have weights divisible by 4 and that for any
two words u, v with weights divisible by four and u ·v = 0, also u+v has weight
divisible by four.

Consider an even, self-dual code C. Then its weight enumerator must satisfy

WC(x, y) = WC(
x+ y√

2
,
x− y√

2
), WC(x, y) = WC(x, iy). (8.17)

Here the first equality follows from Proposition 8.2.2 and the fact that |C| =
(
√

2)n. The second equality follows from the fact that all weights are divisible
by 4. But this means that WC is invariant under the group G generated by the
matrices

A :=
1√
2

(
1 1
1 −1

)
, B :=

(
1 0
0 i

)
, (8.18)

a group of 192 elements!

Exercise 8.2.5. Let ζ = e
2πi
8 be a primitive 8-th root of unity. Show that the

group G defined above is equal to the set of matrices

ζk
(

1 0
0 α

)
, ζk

(
0 1
α 0

)
, ζk

1√
2

(
1 β
α αβ

)
, (8.19)

where α, β ∈ {1, i,−1,−i} and k = 0, . . . , 7.

What can we say about the invariant ring C[x, y]G? Using Molien’s theorem,
we can find the Hilbert series. A (slightly tedious) computation gives

H(C[x, y]G) =
1

(1− t8)(1− t24)
. (8.20)

This suggests that the invariant ring is generated by two algebraically indepen-
dent polynomials f1, f2 homogeneous of degrees 8 and 24 respectively. This is
indeed the case, just take f1 := x8 + 14x4y4 + y8 and f2 := x4y4(x4 − y4)4.
So the invariant ring is generated by f1 and f2, which implies the following
powerful theorem on the weight enumerators of even self-dual codes.

Theorem 8.2.6 (Gleason). The weight enumerator of an even self-dual code is
a polynomial in x8 + 14x4y4 + y8 and x4y4(x4 − y4).

Exercise 8.2.7. The Golay code is an even self-dual [24, 12, 8]-code. Use The-
orem 8.2.6 to show that the weight enumerator of the Golay code equals

x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24. (8.21)

Exercise 8.2.8. There exists an even self-dual code C ⊆ F40
2 , that contains no

words of weight 4. How many words of weight 8 does C have?

Exercise 8.2.9. Let G be the group generated by the matrices 1√
2

(
1 1
1 −1

)
and(

1 0
0 −1

)
. Use Molien’s theorem to compute the Hilbert series of C[x, y]G and find

a set of algebraically independent generators.
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Chapter 9

Algebraic groups

9.1 Definition and examples

Definition 9.1.1. A linear algebraic group is a Zariski closed subgroup of some
GLn.

In more down-to-earth terms, a linear algebraic group is a subgroup G of
GLn (with matrix product as group operation) which moreover is the zero set
of some polynomial equations in the matrix entries. The algebra of regular
functions C[G] on G is therefore C[x11, x12, . . . , xnn,

1
det(x) ]/I(G) where I(G) is

the ideal of all regular functions on GLn that vanish on G. We will usually drop
the adjective linear and just say algebraic group. (Their theory, however, is very
different from the theory of elliptic curves and other Abelian varieties, which
are algebraic groups in other contexts.)

Example 9.1.2. 1. GLn itself is a linear algebraic group, with zero defining
ideal.

2. Often we will find it convenient not to specify a basis, and work with
GL(V ) (and its subgroups), where V is an n-dimensional complex vector
space, rather than with GLn. There is a basis-independent description of
the algebra of regular functions on GL(V ), as well: it is the algebra of
functions on GL(V ) generated by End(V )∗ and 1/ det.

3. On := {g ∈ GLn | gT g = 1} is a linear algebraic group, called the orthogo-
nal group. Its ideal turns out to be generated by the quadratic polynomials
of the form

∑
i xijxil− δjl for j, l = 1, . . . , n (it is obvious that these poly-

nomials are contained in the ideal of On, but not that they generate a
radical ideal).

4. The following is a basis-free version of the orthogonal group: let β be a
non-degenerate symmetric bilinear form on an n-dimensional vector space
V . Then O(β) := {g ∈ GL(V ) | β(gv, gw) = β(v, w) for all v, w ∈ V } is
isomorphic, in the sense defined below, to On.

55
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5. SLn := {g ∈ GLn | det(g) = 1} is a linear algebraic group, whose ideal is
generated by det(x)− 1.

6. Ga :=
{[

1 b
0 1

]
| b ∈ C

}
is an algebraic group, called the additive group.

Its ideal is generated by the polynomials x11 − 1, x22 − 1, x21, and the
quotient by this ideal is isomorphic to C[x12].

7. Every finite group G “is” a linear algebraic group, because it can be re-
alised as a finite (and hence Zariski-closed) subgroup of GL|G| using the
left regular representation.

8. Let A be a finite-dimensional C-algebra. Then the set of all automor-
phisms of A is a linear algebraic subgroup of GL(A). Indeed, choosing a
basis 1 = a1, . . . , an of A, the condition that a linear map g ∈ GL(A) is an
automorphism of A is that ga1 = a1 and (gai)(gaj) = g(aiaj); this gives
(at most) quadratic equations for the entries of the matrix of g relative to
the basis a1, . . . , an.

9. The group of nonsingular diagonal n × n-matrices is a linear algebraic
group, called the n-dimensional torus Tn. The torus T1 is also called the
multiplicative group Gm or denoted GL1.

The name torus stems from the following relation with the real n-dimensional
torus.

Exercise 9.1.3. Let G be the subset of Tn of all matrices whose diagonal
entries lie on the unit circle in C. Show that G (an n-dimensional real torus) is
a subgroup which is dense in Tn in the Zariski topology.

Exercise 9.1.4. Prove directly that the polynomials
∑
j xijxkj−δik with i, k =

1, . . . , n are contained in the ideal generated by the polynomials
∑
i xijxil − δil

with j, l = 1, . . . , k.

Remark 9.1.5. The map (C,+)→ Ga sending b to the matrix in the definition
of Ga is an isomorphism of abstract groups, which moreover is given by a regular
map whose inverse is also regular. We will therefore also consider (C,+) an
algebraic group. This is consistent with a more abstract definition of (affine)
algebraic groups as affine varieties with a compatible group structure.

Exercise 9.1.6. Prove that det(x)−1 is an irreducible polynomial in the entries
of x. (This shows that the ideal of SLn is, indeed, generated by det(x)− 1.)

Definition 9.1.7. Let G ⊆ GLn and H ⊆ GLm be algebraic groups. An
algebraic group homomorphism from G to H is a group homomorphism G→ H
which moreover is a regular map.

The latter condition means, very explicitly, that the homomorphism is given
by m2 functions φij : G → GLm which are restrictions to G of polynomials in
the matrix entries xij of GLn and 1/ det(x).
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Example 9.1.8. Consider the map φ : GLn → GL(Mn) that sends g to the
linear map φ(g) : A 7→ gAg−1. This is an algebraic group homomorphism.
Indeed, it is clearly a group homomorphism, so we need only verify that it is a
regular map. This means that the n2×n2-matrix of φ(g) relative to the basis of
elementary matrices Eij (with zeroes everywhere but for a 1 on position (i, j))
of Mn depends polynomially on the entries and the inverse of the determinant
of g. But this follows from

(gEpqg−1)ij =
∏
k

∏
l

gikδkpδql(g−1)lj

and Cramer’s rule that expresses the entries of g−1 in those of g.
We claim that the image of φ is itself an algebraic group, that is, that it

is a Zariski-closed subgroup of GL(Mn). Note that it is certainly a group,
isomorphic to GLn/ kerφ, where kerφ consists of the scalar matrices; this group
is called the projective (general) linear group and denoted PGLn. Note also that
imφ is contained in the group Aut(Mn) of automorphisms of the n2-dimensional
algebra Mn. We prove that imφ = Aut(Mn). For this, note that the matrices
Eij , i, j = 1, . . . , n satisfy∑

i

Eii = I and EijEkl = δjkEil.

Now if α is any automorphism of Mn, then the matrices Fij := α(Eij), i, j =
1, . . . , n will satisfy the same relations. Let Vi be the image of Fii. Then
Vi 6= 0 since Fii 6= 0, and the relations

∑
i Fii = I and FiiFii = Fii and

FiiFjj = 0, i 6= j imply that

Cn =
n⊕
i=1

Vi.

Hence each Vi must be one-dimensional. Let v1 be a basis of V1, and set vi :=
Fi1v1, i = 2, . . . , n. Then vi 6= 0 since 0 6= Fi1 = Fi1F11, and vi spans Vi
since Fiivi = FiiFi1v1 = Fi1v1 = vi. Now there is a unique g ∈ GLn such
that gei = vi, and we claim that φ(g) = α. Indeed, on the one hand we have
gEijek = δjkvi, and on the other hand we have

Fijgek = Fijvk = FijFk1v1 = δjkFi1v1 = δjkvi,

which shows that gEijg−1 = Fij for all i, j = 1, . . . , n, so that α = φ(g), as
claimed.

Remark 9.1.9. In fact, the image of any homomorphism of algebraic groups
is Zariski-closed, and hence an algebraic group itself. This is a fundamental
property of algebraic groups, which for instance Lie groups do not share. To
prove this property, howeover, one needs slightly more algebraic geometry than
we have at our avail here.

Definition 9.1.10. An algebraic group isomorphism is an algebraic group ho-
momorphism from G to H that has an inverse which is also an algebraic group
homomorphism.
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Exercise 9.1.11. Determine all algebraic group automorphisms of Ga and of
Tn.

Remark 9.1.12. If there exists an algebraic group isomorphism between alge-
braic groups G ⊆ GLn and H ⊆ GLm, then one can use this isomorphism to
prove that C[G] = C[GLn]/I(G) and C[H] = C[GLm]/I(H) are isomorphic, as
well. Just like with affine varieties discussed earlier, this allows one to think
of an algebraic group abstractly, without thinking of one particular closed em-
bedding into some matrix group. We will sometimes implicitly adopt this more
abstract point of view.

Definition 9.1.13. A finite-dimensional rational representation of an algebraic
group G is an algebraic group homomorphism ρ : G → GL(V ) for some finite-
dimensional vector space V , which is then called a rational G-module.

A locally finite rational representation of G is a group homomorphism ρ from
G into the group GL(V ) of bijective linear maps from some potentially infinite
vector space V into itself with the following additional property: for each v ∈ V
there is a finite-dimensional subspace U of V containing v which is ρ(G)-stable
and for which the induced homomorphism ρ : G→ GL(U) is an algebraic group
homomorphism, that is, regular.

In both cases we will write gv instead of ρ(g)v when ρ is clear from the
context. We will also use the word module for the space V equipped with its
linear G-action.

Note that we insist that a rational representation ρ be defined by regular
functions defined everywhere on G. We nevertheless follow the tradition of using
the adjective rational, which refers to the fact that the defining functions may
involve 1/ det(x) in addition to the matrix entries xij .

Example 9.1.14. 1. The identity map GLn → GLn = GL(Cn) makes V =
Cn into a rational GLn-module. The second tensor power V ⊗2 is also
a rational GLn-module. To verify this we note that the matrix entries
of g⊗2 relative to the basis ej ⊗ el, j, l = 1, . . . , n of V ⊗2, where the ei
are the standard basis of Cn, depend polynomially (in fact, quadratically)
on the matrix entries of g: (g⊗2)(ej ⊗ el) = (

∑
i gijei) ⊗ (

∑
k gklek) =∑

i,k gijgklei ⊗ ek.

2. For any integer k the map GLn → Gm, g 7→ det(g)k is a one-dimensional
rational representation. It restricts to a rational representation of any
Zariski closed subgroup G of GLn. For k = 0 this one-dimensional repre-
sentation is called the trivial representation of G.

3. The group homomorphism Ga → GL1 sending
[
1 b
0 1

]
to exp(b) is not

given by regular functions, hence not a rational representation. This re-
flects a difference between the theories of algebraic groups and of Lie
groups.
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4. For any algebraic group G given as a Zariski closed subgroup of GL(V )
the space V is a rational G-module, which we will the defining module of
G.

Exercise 9.1.15. Determine all the one-dimensional rational representations
of the torus Tn. Hint: C[Tn] ∼= C[x±1

11 , . . . , x
±1
nn ], and a one-dimensional rational

representation ρ : Tn → GL1 = T1 is an element ρ of C[Tn] that, apart from
being multiplicative, does not vanish anywhere on Tn.

Exercise 9.1.16. Show that Ga does not have any non-trivial one-dimensional
rational representations. Show also that the Ga-submodule Ce1 in the defining
module C2 does not have a Ga-stable vector space complement in C2.

Remark 9.1.17. Like the second exterior power above, (multi-)linear algebra
constructions transform locally finite rational G-modules into others. In partic-
ular, if ρ : G→ GL(V ) is a locally finite rational representation, then

1. if U is a ρ(G)-stable subspace of V , then the induced maps G → GL(U)
and G→ GL(V/U) are locally finite rational representations;

2. if W is a second locally finite rational G-module, then V ⊕W and V ⊗W
are also locally finite rational G-modules;

3. if k is a natural number, then SkV is a locally finite rational G-module—
indeed, it is a quotient of V ⊗k, and hence locally finite and rational by
the previous two constructions; etc.

We will never consider other representations of algebraic groups than locally
finite rational ones. We will often drop these adjectives.

9.2 The algebra of regular functions as a repre-
sentation

To any algebraic group G ⊆ GLn we have associated its algebra C[G] of regular
functions. Consider the map λ : G→ GL[C[xij , 1/ det(x)]) defined by

(λ(g)f)(h) := f(g−1h) for all g ∈ G, h ∈ GLn.

As f is a polynomial function in the xij and 1/ det(x), the expression f(g−1h)
is a polynomial in the matrix entries and the inverse determinant of g−1h and
hence in the matrix entries gij , hij , i, j = 1, . . . , n and the inverse determinants
det(g)−1,det(h)−1. In particular, for fixed g, the function λ(g)f is a regular
function on GLn.

The map λ satisfies λ(1)f = f and λ(g1g2)f = λ(g1)λ(g2)f and λ(g)(f1 +
f2) = λ(g)f1+λ(g)f2 and λ(g)(cf) = cλ(g)f and λ(g)(f1f2) = (λ(g)f1)(λ(g)f2).
In other words, λ furnishes a representation of G by means of automorphisms
on C[GLn]. We claim that it is locally finite and rational. To see this let
f ∈ C[GLn]. Then the expression f(g−1h) can be expanded as a finite sum
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∑
i fi(g)f ′i(h), where the fi, f ′i are polynomial functions in the entries and in-

verse determinant of g, h, respectively. This shows that for all g ∈ G the function
λ(g)f lies in the finite-dimensional subspace of C[GLn] spanned by the f ′i . Now
let U ⊆ C[GLn] be the linear span of all λ(g)f, g ∈ G. This is a G-stable space,
and finite-dimensional since it is contained in in the span of the f ′i . This proves
that C[GLn] is a locally finite G-module. Finally, let g1, . . . , gk be such that the
f ′′j := λ(gj)f form a basis of U . Choose any projection π from the span of the
f ′i onto U . Then we have, for all g ∈ G,

λ(g)f ′′j = π(
∑
i

fi(ggj)f ′i).

The right-hand side is a polynomial expression in g and its inverse determinant,
hence G→ GL(U) is a regular map, so that C[GLn] is a rational G-module, as
claimed.

Exercise 9.2.1. Show that the ideal I(G) ⊆ GLn of the algebraic group G is
stable under λ(G).

As a consequence of the above, and of the exercise, the algebra C[G] =
C[GLn]/I(G) of regular functions on G is a locally finite, rational G-module.

Remark 9.2.2. The above concerns the action of G by left translation on GLn
and on itself. A similar construction can, of course, be carried out for its action
by right translation.

Proposition 9.2.3. Let V be any finite-dimensional rational module for the al-
gebraic group G whose dual V ∗ is generated, as a G-module, by a single element.
Then there exists a G-equivariant embedding of V into C[G].

Proof. Suppose that f generates V ∗. Take the map ψ : V → C[G], v 7→ fv,
where fv ∈ C[G] is defined by fv(h) = f(h−1v), h ∈ G—this is a regular map
since V is a rational G-module. The map ψ is G-equivariant since

fgv(h) = f(h−1gv) = fv(g−1h) = (gfv)(h)

for all g, h ∈ G and v ∈ V . Moreover, ψ is linear and has trivial kernel—indeed,
fv = 0 means that (hf)(v) = f(h−1v) = fv(h) = 0 for all h ∈ G so that, since
the G-orbit of f spans V ∗, v must be zero.

Exercise 9.2.4. 1. Use the argument of the proof to show that every finite-
dimensional rational G-module can be embedded, as a G-module, into a
direct sum of finitely many copies of C[G].

2. Prove that every finite-dimensional rational Tn-module is a direct sum of
one-dimensional Tn-modules. Hint: analyse the Tn-module C[Tn].

We already knew that finite-dimensional representations of finite groups are
completely reducible, and the preceding exercise shows that the same is true for
finite-dimensiona rational representations of Tn. Next week we will prove that
this is true for a larger class of groups.
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Exercise 9.2.5. Let A be the algebra of (complexified) quaternions, that is,
A = CI ⊕CJ ⊕CK ⊕CL where I is the identity element and the (associative)
multiplication is determined by J2 = K2 = L2 = −I and JK = L. Prove
that the automorphism group of A is isomorphic, as an algebraic group, to the
subgroup SO3 of O3 consisting of the matrices with determinant 1.


