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Chapter 1

Lecture1: introducing
invariant theory

The first lecture gives some flavor of the theory of invariants. Basic notions such
as (linear) group representation, the ring of regular functions on a vector space
and the ring of invariant functions are defined, and some instructive examples
are given.

1.1 Polynomial functions

Let V be a complex vector space. We denote by V ∗ := {f : V → C linear map}
the dual vector space. Viewing the elements of V ∗ as functions on V , and
taking the usual pointwise product of functions, we can consider the algebra of
all C-linear combinations of products of elements from V ∗.

Definition 1.1.1. The coordinate ring O(V ) of the vectorspace V is the algebra
of functions F : V → C generated by the elements of V ∗. The elements of O(V )
are called polynomial or regular functions on V .

If we fix a basis e1, . . . , en of V , then a dual basis of V ∗ is given by the
coordinate functions x1, . . . , xn defined by xi(c1e1 + · · · + cnen) := ci. For the
coordinate ring we obtain O(V ) = C[x1, . . . , xn]. This is a polynomial ring in
the xi, since our base field C is infinite.

Exercise 1.1.2. Show that indeed C[x1, . . . , xn] is a polynomial ring. In other
words, show that the xi are algebraically independent over C: there is no
nonzero polynomial p ∈ C[X1, . . . , Xn] in n variables X1, . . . , Xn, such that
p(x1, . . . , xn) = 0. Hint: this is easy for the case n = 1. Now use induction on
n.

We call a regular function f ∈ O(V ) homogeneous of degree d if f(tv) =
tdf(v) for all v ∈ V and t ∈ C. Clearly, the elements of V ∗ are regular of degree
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6 CHAPTER 1. LECTURE1: INTRODUCING INVARIANT THEORY

1, and the product of polynomials f, g homogeneous of degrees d, d′ yields a
homogeneous polynomial of degree d+d′. It follows that every regular function
f can be written as a sum f = c0 + c1f1 + · · · + ckfk of regular functions fi
homogeneous of degree i. This decomposition is unique (disregarding the terms
with zero coefficient). Hence we have a direct sum decomposition O(V ) =⊕

d∈NO(V )d, where O(V )d := {f ∈ O(V ) | f homogeneous of degree d}, mak-
ing O(V ) into a graded algebra.

Exercise 1.1.3. Show that indeed the decomposition of a regular function f
into its homogeneous parts is unique.

In terms of the basis x1, . . . , xn, we have O(V )d = C[x1, . . . , xn]d, where
C[x1, . . . , xn]d consists of all polynomials of total degree d and has as basis the
monomials xd11 x

d2
2 · · ·xdn

n for d1 + d2 + · · ·+ dn = d.

1.2 Representations

Central objects in this course are linear representations of groups. For any
vector space V we write GL(V ) for the group of all invertible linear maps from
V to itself. When we have a fixed basis of V , we may identify V with Cn and
GL(V ) with the set of invertible matrices n× n matrices GL(Cn) ⊂ Matn(C).

Definition 1.2.1. Let G be a group and let X be a set. An action of G on X
is a map α : G×X → X such that α(1, x) = x and α(g, α(h, x)) = α(gh, x) for
all g, h ∈ G and x ∈ X.

If α is clear from the context, we will usually write gx instead of α(g, x).
What we have just defined is sometimes called a left action of G on X; right
actions are defined similarly.

Definition 1.2.2. If G acts on two sets X and Y , then a map φ : X → Y is
called G-equivariant if φ(gx) = gφ(x) for all x ∈ X and g ∈ G. As a particular
case of this, if X is a subset of Y satisfying gx ∈ X for all x ∈ X and g ∈ G,
then X is called G-stable, and the inclusion map is G-equivariant.

Example 1.2.3. The symmetric group S4 acts on the set
(
[4]
2

)
of unordered

pairs of distinct numbers in [4] := {1, 2, 3, 4} by g{i, j} = {g(i), g(j)}. Think of
the edges in a tetrahedron to visualise this action. The group S4 also acts on the
set X := {(i, j) | i, j ∈ [4] distinct} of all ordered pairs by g(i, j) = (g(i), g(j))—
think of directed edges—and the map X →

(
[4]
2

)
sending (i, j) to {i, j} is S4-

equivariant.

Definition 1.2.4. Let G be a group and let V be a vector space. A (linear)
representation of G on V is a group homomorphism ρ : G→ GL(V ).

If ρ is a representation of G, then the map (g, v) 7→ ρ(g)v is an action of G
on V . Conversely, if we have an action α of G on V such that α(g, .) : V → V is
a linear map for all g ∈ G, then the map g 7→ α(g, .) is a linear representation.
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As with actions, instead of ρ(g)v we will often write gv. A vector space with an
action of G by linear maps is also called a G-module.

Given a linear representation ρ : G → GL(V ), we obtain a linear represen-
tation ρ∗ : G → GL(V ∗) on the dual space V ∗, called the dual representation
or contragredient representation and defined by

(ρ∗(g)x)(v) := x(ρ(g)−1v) for all g ∈ G, x ∈ V ∗ and v ∈ V . (1.1)

Exercise 1.2.5. Let ρ : G → GLn(C) be a representation of G on Cn. Show
that with respect to the dual basis, ρ∗ is given by ρ∗(g) = (ρ(g)−1)T, where AT

denotes the transpose of the matrix A.

1.3 Invariant functions

Definition 1.3.1. Given a representation of a group G on a vector space V , a
regular function f ∈ O(V ) is called G-invariant or simply invariant if f(v) =
f(gv) for all g ∈ G, v ∈ V . We denote by O(V )G ⊆ O(V ) the subalgebra of
invariant functions. The actual representation of G is assumed to be clear from
the context.

Observe that f ∈ O(V ) is invariant, precisely when it is constant on the
orbits of V under the action of G. In particular, the constant functions are
invariant.

The representation of G on V induces an action on the (regular) functions
on V by defining (gf)(v) := f(g−1v) for all g ∈ G, v ∈ V . This way the
invariant ring can be discribed as the set of regular functions fixed by the
action of G: O(V )G = {f ∈ O(V ) | gf = f for all g ∈ G}. Observe that
when restricted to V ∗ ⊂ O(V ), this action coincides with the action corre-
sponding to the dual representation. In terms of a basis x1, . . . , xn of V ∗, the
regular functions are polynomials in the xi and the action of G is given by
gp(x1, . . . , xn) = p(gx1, . . . , gxn) for any polynomial p. Since for every d, G
maps the set of polynomials homogeneous of degree d to itself, it follows that
the homogeneous parts of an invariant are invariant as well. This shows that
O(V )G =

⊕
dO(V )Gd , where O(V )Gd := O(V )d ∩ O(V )G.

Example 1.3.2. Consider the representation ρ : Z/3Z → GL2(C) defined by
mapping 1 to the matrix

(
0 −1
1 −1

)
(and mapping 2 to

(−1 1
−1 0

)
and 0 to the identity

matrix). With respect to the dual basis x1, x2, the dual representation is given
by:

ρ∗(0) =
(

1 0
0 1

)
, ρ∗(1) =

(
−1 −1
1 0

)
, ρ∗(2) =

(
0 1
−1 −1

)
. (1.2)

The polynomial f = x2
1 − x1x2 + x2

2 is an invariant:

ρ∗(1)f = (−x1 +x2)2− (−x1 +x2)(−x1) + (−x1)2 = x2
1−x1x2 +x2

2 = f, (1.3)
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and since 1 is a generator of the group, f is invariant under all elements of the
group. Other invariants are x2

1x2 − x1x
2
2 and x3

1 − 3x1x
2
2 + x3

2. These three
invariants generate the ring of invariants, althought it requires some work to
show that.

A simpler example in which the complete ring of invariants can be computed
is the following.

Example 1.3.3. Let D4 be the symmetry group of the square, generated by a
rotation r, a reflection s and the relations r4 = e, s2 = e and srs = r3, where e
is the identity. The representation ρ of D4 on C2 is given by

ρ(r) =
(

0 1
−1 0

)
, ρ(s) =

(
−1 0
0 1

)
, (1.4)

the dual representation is given by the same matrices:

ρ∗(r) =
(

0 1
−1 0

)
, ρ∗(s) =

(
−1 0
0 1

)
. (1.5)

It is easy to check that x2
1+x2

2 and x2
1x

2
2 are invariants, and so are all polynomial

expressions in these two invariants. We will show that in fact O(C2)D4 =
C[x2

1 + x2
2, x

2
1x

2
2] =: R. It suffices to show that all homogeneous invariants

belong to R.
Let p ∈ C[x1, x2] be a homogeneous invariant. Since sp = p, only monomials

having even exponents for x1 can occur in p. Since r2s exchanges x1 and x2,
for every monomial xa1x

b
2 in p, the monomial xb1x

a
2 must occur with the same

exponent. This proves the claim since every polynomial of the form x2n
1 x2m

2 +
x2m

1 x2n
2 is an element of R. Indeed, we may assume that n ≤ m and proceed

by induction on n + m, the case n + m = 0 being trivial. If n > 0 we have
q = (x2

1x
2
2)n(x2m−2n

2 +x2m−2n
1 ) and we are done. If n = 0 we have 2q = 2(x2m

1 +
x2m

2 ) = 2(x2
1+x2

2)m−
∑m−1
i=1

(
m
i

)
(x2i

1 x
2m−2i
2 ) and we are done by induction again.

1.4 Conjugacy classes of matrices

In this section we discuss the polynomial functions on the square matrices,
invariant under conjugation of the matrix variable by elements of GLn(C). This
example shows some tricks that are useful when proving that certain invariants
are equal. Denote by Mn(C) the vectorspace of complex n × n matrices. We
consider the action of G = GLn(C) on Mn(C) by conjugation: (g,A) 7→ gAg−1

for g ∈ GLn(C) and A ∈ Mn(C). We are interested in finding all polynomials
in the entries of n× n matrices that are invariant under G. Two invariants are
given by the functions A 7→ detA and A 7→ trA.

Let

χA(t) := det(tI −A) = tn − s1(A)tn−1 + s2(A)tn−2 − · · ·+ (−1)nsn(A) (1.6)
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be the characteristic polynomial of A. Here the si are polynomials in the entries
of A. Clearly,

χgAg−1(t) = det(g(tI −A)g−1) = det(tI −A) = χA(t) (1.7)

holds for all t ∈ C. It follows that the functions s1, . . . , sn are G-invariant.
Observe that s1(A) = trA and sn(A) = detA.

Proposition 1.4.1. The functions s1, . . . , sn generate O(Matn(C))GLn(C) and
are algebraically independent.

Proof. To each c = (c1, . . . , cn ∈ Cn we associate the so-called companion matrix

Ac :=



0 · · · · · · 0 −cn

1
. . .

... −cn−1

0
. . . . . .

...
...

...
. . . . . . 0 c2

0 · · · 0 1 c1


∈Mn(C). (1.8)

A simple calculation shows that χAc
(t) = tn + cn−1t

n−1 + · · ·+ c1t+ c0.

Exercise 1.4.2. Verify that χAc
(t) = tn + cn−1t

n−1 + · · ·+ c1t+ c0.

This implies that si(Ac) = (−1)ici and therefore

{(s1(Ac), s2(Ac), . . . , sn(Ac) | A ∈Mn(C)} = Cn. (1.9)

It follows that the si are algebraically independent over C. Indeed, suppose that
p(s1, . . . , sn) = 0 for some polynomial p in n variables. Then

0 = p(s1, . . . , sn)(A) = p(s1(A), . . . , sn(A)) (1.10)

for all A and hence p(c1, . . . , cn) = 0 for all c ∈ Cn. But this implies that p
itself is the zero polynomial.

Now let f ∈ O(Matn(C))G be an invariant function. Define the polyno-
mial p in n variables by p(c1, . . . , cn) := f(Ac), and P ∈ O(Matn(C))G by
P (A) := p(−s1(A), s2(A), . . . , (−1)nsn(A)). By definition, P and f agree on
all companion matrices, and since they are both G-invariant they agree on
W := {gAcg−1 | g ∈ G, c ∈ Cn}. To finish the proof, it suffices to show that W
is dense in Matn(C) since f − P is continuous and zero on W . To show that
W is dense in O(Matn(C)), it suffices to show that the set of matrices with n
distinct nonzero eigenvalues is a subset of W and is itself dense in O(Matn(C)).
This we leave as an exercise.

Exercise 1.4.3. Let A ∈ Matn(C) have n distinct nonzero eigenvalues. Show
that A is conjugate to Ac for some c ∈ Cn. Hint: find v ∈ Cn such that
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v,Av,A2v, . . . , An−1v is a basis for Cn. You might want to use the fact that
the Vandermonde determinant

det


1 . . . 1
c1 . . . cn
c21 . . . c2n
...

. . .
...

cn−1
1 · · · cn−1

n

 (1.11)

is nonzero if c1, . . . , cn are distinct and nonzero.

Exercise 1.4.4. Show that the set of matrices with n distinct nonzero eigen-
values is dense in the set of all complex n × n matrices. Hint: every matrix is
conjugate to an upper triangular matrix.

1.5 Exercises

Exercise 1.5.1. Let G be a finite group acting on V = Cn, n ≥ 1. Show that
O(V )G contains a nontrivial invariant. That is, O(V )G 6= C. Give an example
of an action of an infinite group G on V with the property that only the constant
functions are invariant.

Exercise 1.5.2. Let ρ : Z/2Z→ GL2(C) be the representation given by ρ(1) :=(−1 0
0 −1

)
. Compute the invariant ring. That is, give a minimal set of generators

for O(C2)Z/2Z.

Exercise 1.5.3. Let U := {( 1 a
0 1 ) | a ∈ C} act on C2 in the obvious way. Denote

the coordinate functions by x1, x2. Show that O(C2)U = C[x2].

Exercise 1.5.4. Let ρ : C∗ → GL3(C) be the representation given by ρ(t) =(
t−2 0 0
0 t−3 0
0 0 t4

)
. Find a minimal system of generators for the invariant ring.

Exercise 1.5.5. Let π : Matn(C)→ Cn be given by π(A) := (s1(A), . . . , sn(A)).
Show that for every c ∈ Cn the fiber {A | π(A) = c} contains a unique conjugacy
class {gAg−1 | g ∈ GLn(C)} of a diagonalizable (semisimple) matrix A.



Chapter 2

Lecture2: Symmetric
polynomials

In this chapter, we consider the natural action of the symmetric group Sn on
the ring of polynomials in the variables x1, . . . , xn. The fundamental theorem of
symmetric polynomials states that the elementary symmetric polynomials gen-
erate the ring of invariants. As an application we prove a theorem of Sylvester
that characterizes when a univariate polynomial with real coefficients has only
real roots.

2.1 Symmetric polynomials

Let the group Sn act on the polynomial ring C[x1, . . . , xn] by permuting the
variables:

σp(x1, . . . , xn) := p(xσ(1), . . . , xσ(n)) for all σ ∈ Sn. (2.1)

The polynomials invariant under this action of Sn are called symmetric poly-
nomials. As an example, for n = 3 the polynomial x2

1x2 +x2
1x3 +x1x

2
2 +x1x

2
3 +

x2
2x3 + x2x

2
3 + 7x1 + 7x2 + 7x3 is symmetric, but x2

1x2 + x1x
2
3 + x2

2x3 is not
symmetric (although it is invariant under the alternating group).

In terms of linear representations of a group, we have a linear representation
ρ : Sn → GLn(C) given by ρ(σ)ei := eσ(i), where e1, . . . , en is the standard
basis of Cn. On the dual basis x1, . . . , xn the dual representation is given by
ρ∗(σ)xi = xσ(i), as can be easily checked. The invariant polynomial functions
on Cn are precisely the symmetric polynomials.

Some obvious examples of symmetric polynomials are

s1 := x1 + x2 + · · ·+ xn and (2.2)
s2 := x1x2 + x1x3 + · · ·+ x1xn + · · ·+ xn−1xn (2.3)

More generally, for every k = 1, . . . , n, the k-th elementary symmetric polyno-

11
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mial
sk :=

∑
i1<...<ik

xi1 · · ·xik (2.4)

is invariant. Recall that these polynomials express the coefficients of a univariate
polynomial in terms of its roots:

n∏
i=1

(t− xi) = xn +
n∑
k=1

(−1)ksktn−k. (2.5)

Moreover, if g is any polynomial in n variables y1, . . . , yn, then g(s1, . . . , sn) is
again a polynomial in the xi which is invariant under all coordinate permuta-
tions. A natural question is: which symmetric polynomials are expressible as a
polynomial in the elementary symmetric polynomials. For example x2

1 + · · ·+x2
n

is clearly symmetric and it can be expressed in terms of the si:

x2
1 + · · ·+ x2

n = s21 − 2s2. (2.6)

It is a beautiful fact that the elementary symmetric polynomials generate all
symmetric polynomials.

Theorem 2.1.1 (Fundamental theorem of symmetric polynomials). Every Sn-
invariant polynomial f(x1, . . . , xn) in the xi can be written as g(s1, . . . , sn),
where g = g(y1, . . . , yn) is a polynomial in n variables. Moreover, given f , the
polynomial g is unique.

The proof of this result uses the lexicographic order on monomials in the
variables x = (x1, . . . , xn). We say that xα := xα1

1 · · ·xαn
n is (lexicographically)

larger than xβ if there is a k such that αk > βk and αi = βi for all i < k. So
for instance x2

1 > x1x
4
2 > x1x

3
2 > x1x2x

5
3, etc. The leading monomial lm(f) of

a non-zero polynomial f in the xi is the largest monomial (with respect to this
ordering) that has non-zero coefficient in f .

Exercise 2.1.2. Check that lm(fg) = lm(f)lm(g) and that lm(sk) = x1 · · ·xk.

Exercise 2.1.3. Show that there are no infinite lexicographically strictly de-
creasing chains of monomials.

Since every decreasing chain of monomials is finite, we can use this order to
do induction on monomials, as we do in the following proof.

Proof of Theorem 2.1.1. Let f be any Sn-invariant polynomial in the xi. Let xα

be the leading monomial of f . Then α1 ≥ . . . ≥ αn because otherwise a suitable
permutation applied to xα would yield a lexicographically larger monomial,
which has the same non-zero coefficient in f as xα by invariance of f . Now
consider the expression

sαn
n s

αn−1−αn

n−1 · · · sα1−α2
1 . (2.7)
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The leading monomial of this polynomial equals

(x1 · · ·xn)αn(x1 · · ·xn−1)αn−1−αn · · ·xα1−α2
1 , (2.8)

which is just xα. Subtracting a scalar multiple of the expression from f therefore
cancels the term with monomial xα, and leaves an Sn-invariant polynomial with
a strictly smaller leading monomial. After repeating this step finitely many
times, we have expressed f as a polynomial in the sk.

This shows existence of g in the theorem. For uniqueness, let g ∈ C[y1, . . . , yn]
be a nonzero polynomial in n variables. It suffices to show that g(s1, . . . , sn) ∈
C[x1, . . . , xn] is not the zero polynomial. Observe that

lm(sα1
1 · · · sαn

n ) = xα1+···+αn
1 xα2+···+αn

2 · · ·xαn
n . (2.9)

It follows that the leading monomials of the terms sα1
1 · · · sαn

n , corresponding
to the monomials occuring with nonzero coefficient in g =

∑
α y

α, are pairwise
distinct. In particular, the largest such leading monomial will not be cancelled
in the sum and is the leading monomial of g(s1, . . . , sn).

Remark 2.1.4. The proof shows that in fact the coefficients of the polynomial
g lie in the ring generated by the coefficients of f . In particular, when f has
real coefficients, also g has real coefficients.

Exercise 2.1.5. Let π : Cn → Cn be given by

π(x1, . . . , xn) = (s1(x1, . . . , xn), . . . , sn(x1, . . . , xn)). (2.10)

Use the fact that every univariate polynomial over the complex numbers can be
factorised into linear factors to show that π is surjective. Use this to show that
s1, . . . , sn are algebraically independent over C. Describe for b ∈ Cn the fiber
π−1(b).

Remark 2.1.6. The above proof of the fundamental theorem of symmetric
polynomials gives an algorithm to write a given symmetric polynomial as a
polynomial in the elementary symmetric polynomials. In each step the initial
monomial of the residual symmetric polynomial is decreased, ending with the
zero polynomial after a finite number of steps. Instead of using the described
lexicographic order on the monomials, other linear orders can be used. An
example would be the degree lexicographic order, where we set xα > xβ if either
α1 + · · ·+αn > β1 + · · ·+βn or equality holds and there is a k such that αk > βk
and αi = βi for all i < k.

Example 2.1.7. We write x3
1 + x3

2 + x3
3 as a polynomial in the si. Since the

leading monomial is x3
1x

0
2x

0
3 we subtract s03s

0
2s

3
1 and are left with −3(x2

1x2 +
x2

1x3 + x1x
2
2 + x1x

2
3 + x2

2x3 + x2x
2
3) − 6(x1x2x3). The leading monomial is

now x2
1x2, so we add 3s03s

1
2s

2−1
1 . This leaves 3x1x2x3 = 3s13s

1−1
2 s1−1

1 , which is
reduced to zero in the next step.

This way we obtain x3
1 + x3

2 + x3
3 = s31 − 3s1s2 + 3s3.

Exercise 2.1.8. Give an upper bound on the number of steps of the algo-
rithm in terms of the number of variables n and the (total) degree of the input
polynomial f .
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2.2 Counting real roots

Given a (monic) polynomial f(t) = tn−a1t
n−1 + · · ·+ (−1)nan, the coefficients

are elementary symmetric functions in the roots of f . Therefore, any property
that can be expressed as a symmetric polynomial in the roots of f , can also be
expressed as a polynomial in the coefficients of f . This way we can determine
properties of the roots by just looking at the coefficients of f . For example:
when are all roots of f distinct?

Definition 2.2.1. For a (monic) polynomial f = (t−x1) · · · (t−xn), define the
discriminant ∆(f) of f by ∆(f) :=

∏
1≤i<j≤n(xi − xj)2.

Clearly, ∆(f) = 0 if and only if all roots of f are distinct. It is not hard to
see that ∆(f) is a symmetric polynomial in the roots of f . We will see later
how f can be expressed in terms of the coefficients of f .

Exercise 2.2.2. Let f(t) = t2−at+ b. Write ∆(f) as a polynomial in a and b.

Definition 2.2.3. Given n complex numbers x1, . . . , xn, the Vandermonde ma-
trix A for these numbers is given by

A :=


1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
... · · ·

...
1 xn · · · xn−1

n

 . (2.11)

Lemma 2.2.4. Given numbers x1, . . . , xn, the Vandermonde matrix A has
nonzero determinant if and only if the x1, . . . , xn are distinct.

Proof. View the determinant of the Vandermonde matrix (called the Vander-
monde determinant) as a polynomial p in the variables x1, . . . , xn. For any
i < j, p(x1, . . . , xn) = 0 when xi = xj and hence p is divisible by (xj − xi).
Expanding the determinant, we see that p is homogeneous of degree

(
n
2

)
, with

lowest monomial x0
1x

1
2 · · ·xn−1

n having coefficient 1. It follows that

p =
∏

1≤i<j≤n

(xj − xi), (2.12)

since the right-hand side divides p, and the two polynomials have the same
degree and the same nonzero coefficient for x0

1x
1
2 · · ·xn−1

n .

Exercise 2.2.5. Show that the Vandermonde matrix A of numbers x1, . . . , xn
satisfies detA =

∏
1≤i<j≤n(xj − xi) by doing row- and column-operations on A

and applying induction on n.

Definition 2.2.6. Let f = (t − α1)(t − α2) · · · (t − αn) ∈ C[t] be a monic
polynomial of degree n in the variable t. We define the Bezoutiant matrix
Bez(f) of f by

Bez(f) = (pi+j−2(α1, . . . , αn))ni,j=1 , (2.13)

where pk(x1, . . . , xn) := xk1 + · · · + xkn for k = 0, 1, . . . is the k-th Newton poly-
nomial.



2.2. COUNTING REAL ROOTS 15

Since the entries of Bez(f) are symmetric polynomials in the roots of f , it fol-
lows by the fundamental theorem of symmetric polynomials that the entries are
polynomials (with integer coefficients) in the elementary symmetric functions
and hence in the coefficients of f . In particular, when f has real coefficients,
Bez(f) is a real matrix. Another useful fact is that Bez(f) = ATA, where A is
the Vandermonde matrix for the roots α1, . . . , αn of f .

Exercise 2.2.7. Show that the discriminant of f satisfies: ∆(f) = det Bez(f).

Example 2.2.8. Let f = t2 − at + b have roots α and β. So a = α + β
and b = αβ. We compute Bez(f). We have p0 = 2, p1 = a, p2 = a2 − 2b
so Bez(f) =

(
2 a
a a2−2b

)
. The determinant equals a2 − 4b and the trace equals

a2 − 2b+ 2. There are three cases for the eigenvalues λ1 ≥ λ2 of Bez(f):

• If a2 − 4b > 0, we have λ1, λ2 > 0 and α, β are distinct real roots.

• If a2 − 4b = 0, we have λ1 > 0, λ2 = 0 and α = β.

• If a2− 4b < 0, we have λ1 > 0, λ2 < 0 and α and β are complex conjugate
(nonreal) roots.

The determinant of Bez(f) determines whether f has double roots. The
matrix Bez(f) can give us much more information about the roots of f . In
particular, it describes when a polynomial with real coefficients has only real
roots!

Theorem 2.2.9 (Sylverster). Let f ∈ R[t] be a polynomial in the variable t with
real coefficients. Let r be the number of distinct roots in R and 2k the number
of distinct roots in C \ R. Then the Bezoutiant matrix Bez(f) has rank r + 2k,
with r + k positive eigenvalues and k negative eigenvalues.

proof of Theorem 2.2.9. Number the roots α1, . . . , αn of f in such a way that
α1, . . . , α2k+r are distinct. We write mi for the multiplicity of the root αi,
i = 1, . . . , 2k+r. Let A be the Vandermonde matrix for the numbers α1, . . . , αn,
so that Bez(f) = ATA. We start by computing the rank of Bez(f).

Denote by Ã the (2k + r) × n submatrix of A consisting of the first 2k + r
rows of A. An easy computation shows that

Bez(f) = ATA = ÃT diag(m1, . . . ,m2k+r)Ã, (2.14)

where diag(m1, . . . ,m2k+r) is the diagonal matrix with the multiplicities of the
roots on the diagonal. Since, Ã contains a submatrix equal to the Vandermonde
matrix for the distinct roots α1, . . . , α2k+r, it follows by Lemma 2.2.4 that the
rows of Ã are linearly independent. Since the diagonal matrix has full rank, it
follows that Bez(f) has rank 2k + r.

To finish the proof, we write A = B + iC, where B and C are real matrices
and i denotes a square root of −1. Since f has real coefficients, Bez(f) is a real
matrix and hence

Bez(f) = BTB − CTC + i(CTB +BTC) = BTB − CTC. (2.15)
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We have
rank(B) ≤ r + k, rank(C) ≤ k. (2.16)

Indeed, for any pair α, α of complex conjugate numbers, the real parts of αj

and αj are equal and the imaginary parts are opposite. Hence B has at most
r + k different rows and C has (up to a factor −1) at most k different nonzero
rows.

Denote the kernel of Bez(f), B and C by N,NB and NC respectively. Clearly
NB ∩NC ⊆ N . This gives

dimN ≥ dim(NB ∩NC) ≥ dimNB + dimNC − n
≥ (n− r − k) + (n− k)− n
= n− r − 2k = dimN. (2.17)

Hence we have equality throughout, showing that dimNB = n−r−k,dimNC =
n− k and NB ∩NC = N .

Write NB = N ⊕ N ′B and NC = N ⊕ N ′C as a direct sum of vector spaces.
For all nonzero u ∈ N ′C , we have uTCTCu = 0 and uTBTBu > 0 and so
uTBez(f)u > 0. This shows that Bez(f) has at least dimN ′C = r + k positive
eigenvalues (see exercises). Similarly, uTBez(f)u < 0 for all nonzero u ∈ N ′B
so that Bez(f) has at least dimN ′B = k negative eigenvalues. Since Bez(f) has
n− r− 2k zero eigenvalues, it has exactly r+ k positive eigenvalues and exactly
k negative eigenvalues.

Exercise 2.2.10. Let B be a real n × n matrix and x ∈ Rn. Show that
xTBTBx ≥ 0 and that equality holds if and only if Bx = 0.

Exercise 2.2.11. Let A be a real symmetric n × n matrix. Show that the
following are equivalent:

• there exists a linear subspace V ⊆ Rn of dimension k such that xTAx > 0
for all nonzero x ∈ V ,

• A has at least k positive eigenvalues.

Exercise 2.2.12. Use the previous exercise to show Sylvesters law of inertia:
Given a real symmetric n × n matrix A and an invertible real matrix S, the
two matrices A and STAS have the same number of positive, negative and zero
eigenvalues. This implies that the signature of A can be easily determined by
bringing it into diagonal form using simultaneous row and column operations.

2.3 Exercises

Exercise 2.3.1. Let f(t) := t3 + at+ b, where a, b are real numbers.

• Compute Bez(f).

• Show that ∆(f) = −4a3 − 27b2.
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• Determine, in terms of a and b, when f has only real roots.

Exercise 2.3.2. Prove the following formulas due to Newton:

pk − s1pk−1 + · · ·+ (−1)k−1sk−1p1 + (−1)kksk = 0 (2.18)

for all k = 1, . . . , n.
Show that for k > n the following similar relation holds:

pk − s1pk−1 + · · ·+ (−1)nsnpk−n = 0. (2.19)

Hint: Let f(t) = (1− tx1) · · · (1− txn) and compute f ′(t)/f(t) in two ways.
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Chapter 3

Multilinear algebra

We review some constructions from linear algebra, in particular the tensor prod-
uct of vector spaces. Unless explicitly stated otherwise, all our vector spaces
are over the field C of complex numbers.

Definition 3.0.3. Let V1, . . . , Vk,W be vector spaces. A map φ : V1×· · ·×Vk →
W is called multilinear (or k-linear or bilinear if k = 2 or trilinear if k = 3) if
for each i and all v1, . . . , vi−1, vi+1, . . . , vk the map Vi →W, vi 7→ φ(v1, . . . , vk)
is linear.

Let U , V and T be vector spaces and let ⊗ : U × V → T be a bilinear
map. The map ⊗ is said to have the universal property if for every bilinear
map φ : U × V → W there exists a unique linear map f : T → W such that
φ = f ◦ ⊗.

U × V
φ //

⊗
��

W

T

f

;;wwwwwwwww

We will usually write u ⊗ v := ⊗(u, v) for (u, v) ∈ U × V . Although ⊗ will
in general not be surjective, the image linearly spans T .

Exercise 3.0.4. Show that if ⊗ : U × V → T has the universal property, the
vectors u⊗ v, u ∈ U, v ∈ V span T .

Given U and V , the pair (T,⊗) is unique up to a unique isomorphism. That
is, given two bilinear maps ⊗ : U ×V → T and ⊗′ : U ×V → T ′ that both have
the universal property, there is a unique linear isomorphism f : T → T ′ such
that f(u⊗ v) = u⊗′ v for all u ∈ U, v ∈ V . This can be seen as follows. Since
⊗′ is bilinear, there exists by the universal property of ⊗, a unique linear map
f : T → T ′ such that ⊗′ = f ◦⊗. It suffices to show that f is a bijection. By the
universal property of ⊗′ there is a linear map f ′ : T ′ → T such that ⊗′ = f ′ ◦⊗.
Now ⊗ ◦ f ′ ◦ f = ⊗, which implies that f ′ ◦ f : T → T is the identity since the

19



20 CHAPTER 3. MULTILINEAR ALGEBRA

image of ⊗ spans T (or alternatively, by using the universal property of ⊗, and
the bilinear map ⊗ itself). Hence f is injective. Similarly, f ◦ f ′ is the identity
on T ′ and hence f is surjective.

Definition 3.0.5. Let U, V be vector spaces. The tensor product of U and V
is a vector space T together with a bilinear map ⊗ : U × V → T having the
universal property. The space T , which is uniquely determined by U and V up
to an isomorphism, is denoted by U ⊗ V .

Often we will refer to U ⊗ V as the tensor product of U and V , implicitly
assuming the map ⊗ : U × V → U ⊗ V .

So far, we have not shown that the tensor product U ⊗ V exists at all, nor
did we gain insight into the dimension of this space in terms of the dimensions
of U and V . One possible construction of U ⊗ V is as follows.

Start with the vector space F (for free or formal) formally spanned by pairs
(u, v) as u, v run through U, V , respectively. Now take the subspace R (for
relations) of F spanned by all elements of the form

(c1u+ u′, c2v + v′)− c1c2(u, v)− c1(u, v′)− c2(u′, v)− (u′, v′) (3.1)

with c1, c2 ∈ C, v, v′ ∈ V, u, u′ ∈ U . Now any map φ : U × V → W factors
through the injection ı : U × V → F and a unique linear map g : F → W .
The kernel of g contains R if and only if φ is bilinear, and in that case the map
g factors through the quotient map π : F → F/R and a unique linear map
f : F/R → W . Taking for ⊗ the bilinear map π ◦ ı : (u, v) 7→ u ⊗ v, the space
F/R together with the map ⊗ is the tensor product of U and V .

As for the dimension of U ⊗ V , let (ui)i∈I be a basis of U . Then by using
bilinearity of the tensor product, every element T ∈ U ⊗ V can be written
as a t =

∑
i∈I ui ⊗ wi with wi non-zero for only finitely many i. We claim

that the wi in such an expression are unique. Indeed, for k ∈ I let ξk be
the linear function on U determined by ui 7→ δik, i ∈ I. The bilinear map
U × V → V, (u, v) → ξk(u)v factors, by the universal property, through a
unique linear map f : U ⊗ V → V . This map sends all terms in the expression∑
i∈I ui ⊗wi for T to zero except the term with i = k, which is mapped to wk.

Hence wk = fk(t) and this shows the uniqueness of the wk.

Exercise 3.0.6. Use a similar argument to show that if (vj)j∈J is a basis for
V , then the set of all elements of the form ui ⊗ vj , i ∈ I, j ∈ J form a basis of
U ⊗ V .

This exercise may remind you of matrices. Indeed, there is a natural map
φ from U ⊗ V ∗, where V ∗ is the dual of V , into the space Hom(V,U) of linear
maps V → U , defined as follows. Given a pair u ∈ U and f ∈ V ∗, φ(u ⊗ f) is
the linear map sending v to f(v)u. Here we are implicitly using the universal
property: the linear map v 7→ f(v)u depends bilinearly on f and u, hence there
is a unique linear map U ⊗ V ∗ → Hom(V,U) that sends u ⊗ f to v 7→ f(v)u.
Note that if f and u are both non-zero, then the image of u⊗ f is a linear map
of rank one.
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Exercise 3.0.7. 1. Show that φ is injective. Hint: after choosing a basis
(ui)i use that a general element of U ⊗V ∗ can be written in a unique way
as
∑
i ui ⊗ fi.

2. Show that φ is surjective onto the subspace of Hom(V,U) of linear maps
of finite rank, that is, having finite-dimensional image.

Making things more concrete, if U = Cm and V = Cn and u1, . . . , um is the
standard basis of U and v1, . . . , vn is the standard basis of V with dual basis
x1, . . . , xn, then the tensor ui ⊗ xj corresponds to the linear map with matrix
Eij , the matrix having zeroes everywhere except for a 1 in position (i, j).

Remark 3.0.8. A common mistake is to assume that all elements of U ⊗ V
are of the form u⊗ v. The above shows that in the finite dimensional case the
latter elements correspond to rank-one linear maps from V ∗ to U , or to rank-one
matrices, while U ⊗ V consists of all finite-rank linear maps from V ∗ to U—a
much larger set.

Next we discuss tensor products of linear maps. If A : U → U ′ and B :
V → V ′ are linear maps, then the map U × V → U ′ ⊗ V ′, (u, v) 7→ Au⊗Bv is
bilinear. Hence, by the universal property of U ⊗ V there exists a unique linear
map U ⊗V → U ′⊗V ′ that sends u⊗v to Au⊗Bv. This map is denoted A⊗B.

Example 3.0.9. If dimU = m,dimU ′ = m′,dimV = n, dimV ′ = n′ and if
A,B are represented by an m′ ×m-matrix (aij)ij and an n′ × n-matrix (bkl)kl,
respectively, then A⊗B can be represented by an m′n′×mn-matrix, with rows
labelled by pairs (i, k) with i ∈ [m′], k ∈ [n′] and columns labelled by pairs (j, l)
with j ∈ [m], l ∈ [n], whose entry at position ((i, k), (j, l)) is aijbkl. This matrix
is called the Kronecker product of the matrices (aij)ij and (bkl)kl.

Exercise 3.0.10. Assume, in the setting above, that U = U ′,m′ = m and
V = V ′, n′ = n and A,B are diagonalisable with eigenvalues λ1, . . . , λm and
µ1, . . . , µn, respectively. Determine the eigenvalues of A⊗B.

Most of what we said about the tensor product of two vector spaces carries
over verbatim to the tensor product V1 ⊗ · · · ⊗ Vk of k. This tensor product
can again be defined by a universal property involving k-linear maps, and its
dimension is

∏
i dimVi. Its elements are called k-tensors. We skip the boring

details, but do point out that for larger k there is no longer a close relationship
with of k-tensors with linear maps—in particular, the rank of a k-tensor T ,
usually defined as the minimal number of terms in any expression of T as a sum
of pure tensors v1⊗· · ·⊗vk, is only poorly understood. For instance, computing
the rank, which for k = 2 can be done using Gaussian elimination, is very hard
in general. If all Vi are the same, say V , then we also write V ⊗k for V ⊗· · ·⊗V
(k factors).

Given three vector spaces U, V,W , we now have several ways to take their
tensor product: (U ⊗ V ) ⊗W , U ⊗ (V ⊗W ) and U ⊗ V ⊗W . Fortunately,
these tensor products can be identified. For example, there is a unique linear
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isomorphism f : U⊗V ⊗W → (U⊗V )⊗W such that f(u⊗v⊗w) = (u⊗v)⊗w
for all u ∈ U, v ∈ V,w ∈W .

Indeed, consider the trilinear map U × V ×W → (U ⊗ V ) ⊗W defined by
(u, v, w) 7→ (u⊗ v)⊗w. By the universal property, there is a unique linear map
f : U ⊗ V ⊗W → (U ⊗ V ) ⊗W such that f(u ⊗ v ⊗ w) = (u ⊗ v) ⊗ w for all
u, v, w.

Now for fixed w ∈W , the bilinear map φw : U ×V → U ⊗V ⊗W defined by
φw(u, v) := u⊗v⊗w induces a linear map gw : U⊗V → U⊗V ⊗W such that u⊗v
is mapped to u⊗ v⊗w. Hence the bilinear map φ : (U ⊗V )×W → U ⊗V ⊗W
given by φ(x,w) := gw(x) induces a linear map g : (U ⊗ V )⊗W → U ⊗ V ⊗W
sending (u⊗v)⊗w to u⊗v⊗w. It follows that f ◦g and g◦f are the identity on
(U⊗V )⊗W and U⊗V ⊗W respectively. This shows that f is an isomorphism.

Exercise 3.0.11. Let V be a vector space. Show that for all p, q there is a
unique linear isomorphism V ⊗p ⊗ V ⊗q → V ⊗(p+q) sending (v1 ⊗ · · · ⊗ vp) ⊗
(vp+1 ⊗ · · · ⊗ vp+q) to v1 ⊗ · · · ⊗ vp+q.

The direct sum TV :=
⊕∞

k=0 V
⊗k is called the tensor algebra of V , where

the natural linear map V ⊗k × V ⊗l → V ⊗k ⊗ V ⊗l = V ⊗(k+l) plays the role of
(non-commutative but associative) multiplication. We move on to other types
of tensors.

Definition 3.0.12. Let V be a vector space. A k-linear map ω : V k → W
is called symmetric if ω(v1, . . . , vk) = ω(vπ(1), . . . , vπ(k)) for all permutations
π ∈ Sym(k).

The k-th symmetric power of V is a vector space SkV together with a sym-
metric k-linear map V k → SkV, (v1, . . . , vk)→ v1 · · · vk such that for all vector
spaces W and symmetric k-linear maps ψ : V k → W there is a unique linear
map φ : SkV →W such that ψ(u1, . . . , uk) = φ(u1 · · ·uk).

Uniqueness of the k-th symmetric power of V can be proved in exactly the
same manner as uniqueness of the tensor product. For existence, let R be the
subspace of V ⊗k := V ⊗ · · · ⊗ V spanned by all elements of the form

v1 ⊗ · · · ⊗ vk − vπ(1) ⊗ · · · ⊗ vπ(k), π ∈ Sym(k).

Then the composition of the maps V k → V ⊗k → V ⊗k/R is a symmetric k-linear
map and if ψ : V k → W is any such map, then ψ factors through a linear map
V ⊗k →W since it is k-linear, which in turn factors through a unique linear map
V ⊗k/R→W since ψ is symmetric. This shows existence of symmetric powers,
and, perhaps more importantly, the fact that they are quotients of tensor powers
of V . This observation will be very important in proving the first fundamental
theorem for GL(V ).

There is also an analogue of the tensor product of maps: if A is a linear map
U → V , then the map Uk → SkV, (u1, . . . , uk) 7→ Au1 · · ·Auk is multilinear and
symmetric. Hence, by the universal property of symmetric powers, it factors
through the map Uk → SkU and a linear map SkU → SkV . This map, which
sends u1 · · ·uk to Au1 · · ·Auk, is the k-th symmetric power SkA of A.
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If (vi)i∈I is a basis of V , then using multilinearity and symmetry every
element t of SkV can be written as a linear combination

∑
α cαv

α of the elements
vα :=

∏
i∈I v

αi
i —the product order is immaterial—where α ∈ NI satisfies |α| :=∑

i∈I αi = k and only finitely many coefficients cα are non-zero. We claim that
the cα are unique, so that the vα, |α| = k a basis of V . Indeed, let α ∈ NI
with |α| = k. Then there is a unique k-linear map ψα : V k → C which on
a tuple (vi1 , . . . , vik) takes the value 1 if |{j | ij = i}| = αi for all i ∈ I and
zero otherwise. Moreover, ψα is symmetric and therefore induces a linear map
φα : SkV → C. We find that cα = φα(t), which proves the claim.

This may remind you of polynomials. Indeed, if V = Cn and x1, . . . , xn is
the basis of V ∗ dual to the standard basis of V , then SkV ∗ is just the space of
homogeneous polynomials in the xi of degree k. The algebra of all polynomial
functions on V therefore is canonically isomorphic to SV ∗ :=

⊕∞
k=0 S

kV ∗. The
product of a homogeneous polynomials of degree k and homogeneous polynomi-
als of degree l corresponds to the unique bilinear map SkV ∗ × SlV ∗ → Sk+lV ∗

making the diagram

(V ∗)⊗k × (V ∗)⊗l //

��

(V ∗)⊗k+l

��
SkV ∗ × SlV ∗ //____ Sk+lV ∗

commute, and this corresponds to multiplying polynomials of degrees k and
l. Thus SV ∗ is a quotient of the tensor algebra TV (in fact, the maximal
commutative quotient).

Above we have introduced SkV as a quotient of V ⊗k. This should not be
confused with the subspace of V ⊗k spanned by all symmetric tensors, defined as
follows. For every permutation π ∈ Sk there is a natural map V k → V k sending
(v1, . . . , vk) to (vπ−1(1), . . . , vπ−1(k)). Composing this map with the natural k-
linear map V k → V ⊗k yields another k-linear map V k → V ⊗k, and hence a
linear map V ⊗k → V ⊗k, also denoted π. A tensor ω in V ⊗k is called symmetric
if πω = ω for all π ∈ Sk. The restriction of the map V ⊗k → SkV to the
subspace of symmetric tensors is an isomorphism with inverse determined by
v1 · · · vk 7→ 1

k!

∑
π∈Sk

π(v1⊗· · · vk). (Note that this inverse would not be defined
in characteristic less than k.)

Exercise 3.0.13. Show that the subspace of symmetric tensors in V ⊗k is
spanned by the tensors v ⊗ v · · · ⊗ v, where v ∈ V .

3.1 Exercises

Exercise 3.1.1. Let U ⊗ V be the tensor product of the vector spaces U and
V . Let u1, . . . , us and u′1, . . . , u

′
t be two systems of linearly independent vectors

in U and let v1, . . . , vs and v′1, . . . , v
′
t be two systems of linearly independent

vectors in V . Suppose that

u1 ⊗ v1 + · · ·+ us ⊗ vs = u′1 ⊗ v′1 + · · ·+ u′t ⊗ v′t. (3.2)
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Show that s = t.

Exercise 3.1.2. a) Let T ∈ V1 ⊗ V2 ⊗ V3 be an element of the tensor product
of V1, V2 and V3. Suppose that there exist v1 ∈ V1, v3 ∈ V3, T23 ∈ V2⊗V3

and T12 ∈ V1 ⊗ V2 such that

T = v1 ⊗ T23 = T12 ⊗ v3. (3.3)

Show that there exist a v2 ∈ V2 such that T = v1 ⊗ v2 ⊗ v3.

b) Suppose that T ∈ V1⊗V2⊗V3 can be written as a sum of at most d1 tensors
of the form v1 ⊗ T23, where v1 ∈ V1, T23 ∈ V2 ⊗ V3, and also as a sum of
at most d3 tensors of the form T12 ⊗ v3, where v3 ∈ V3, T12 ∈ V1 ⊗ V2.
Show that T can be written as the sum of at most d1d3 tensors of the
form v1 ⊗ v2 ⊗ v3, where vi ∈ Vi.

Exercise 3.1.3. Let U, V,W be vector spaces. Denote by B(U × V,W ) the
linear space of bilinear maps from U × V to W . Show that the map f 7→ f ◦ ⊗
is a linear isomorphism between Hom(U ⊗ V,W ) and B(U × V,W ).

Exercise 3.1.4. Let U, V be finite dimensional vector spaces. Show that the
linear map φ : U∗ ⊗ V ∗ → (U ⊗ V )∗ given by φ(f ⊗ g)(u⊗ v) := f(u)g(v) is an
isomorhism.


