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Chapter 1

Lecture1: introducing
invariant theory

The first lecture gives some flavor of the theory of invariants. Basic notions such
as (linear) group representation, the ring of regular functions on a vector space
and the ring of invariant functions are defined, and some instructive examples
are given.

1.1 Polynomial functions

Let V be a complex vector space. We denote by V ∗ := {f : V → C linear map}
the dual vector space. Viewing the elements of V ∗ as functions on V , and
taking the usual pointwise product of functions, we can consider the algebra of
all C-linear combinations of products of elements from V ∗.

Definition 1.1.1. The coordinate ring O(V ) of the vectorspace V is the algebra
of functions F : V → C generated by the elements of V ∗. The elements of O(V )
are called polynomial or regular functions on V .

If we fix a basis e1, . . . , en of V , then a dual basis of V ∗ is given by the
coordinate functions x1, . . . , xn defined by xi(c1e1 + · · · + cnen) := ci. For the
coordinate ring we obtain O(V ) = C[x1, . . . , xn]. This is a polynomial ring in
the xi, since our base field C is infinite.

Exercise 1.1.2. Show that indeed C[x1, . . . , xn] is a polynomial ring. In other
words, show that the xi are algebraically independent over C: there is no
nonzero polynomial p ∈ C[X1, . . . , Xn] in n variables X1, . . . , Xn, such that
p(x1, . . . , xn) = 0. Hint: this is easy for the case n = 1. Now use induction on
n.

We call a regular function f ∈ O(V ) homogeneous of degree d if f(tv) =
tdf(v) for all v ∈ V and t ∈ C. Clearly, the elements of V ∗ are regular of degree
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6 CHAPTER 1. LECTURE1: INTRODUCING INVARIANT THEORY

1, and the product of polynomials f, g homogeneous of degrees d, d′ yields a
homogeneous polynomial of degree d+d′. It follows that every regular function
f can be written as a sum f = c0 + c1f1 + · · · + ckfk of regular functions fi

homogeneous of degree i. This decomposition is unique (disregarding the terms
with zero coefficient). Hence we have a direct sum decomposition O(V ) =⊕

d∈NO(V )d, where O(V )d := {f ∈ O(V ) | f homogeneous of degree d}, mak-
ing O(V ) into a graded algebra.

Exercise 1.1.3. Show that indeed the decomposition of a regular function f
into its homogeneous parts is unique.

In terms of the basis x1, . . . , xn, we have O(V )d = C[x1, . . . , xn]d, where
C[x1, . . . , xn]d consists of all polynomials of total degree d and has as basis the
monomials xd1

1 x
d2
2 · · ·xdn

n for d1 + d2 + · · ·+ dn = d.

1.2 Representations

Central objects in this course are linear representations of groups. For any
vector space V we write GL(V ) for the group of all invertible linear maps from
V to itself. When we have a fixed basis of V , we may identify V with Cn and
GL(V ) with the set of invertible matrices n× n matrices GL(Cn) ⊂ Matn(C).

Definition 1.2.1. Let G be a group and let X be a set. An action of G on X
is a map α : G×X → X such that α(1, x) = x and α(g, α(h, x)) = α(gh, x) for
all g, h ∈ G and x ∈ X.

If α is clear from the context, we will usually write gx instead of α(g, x).
What we have just defined is sometimes called a left action of G on X; right
actions are defined similarly.

Definition 1.2.2. If G acts on two sets X and Y , then a map φ : X → Y is
called G-equivariant if φ(gx) = gφ(x) for all x ∈ X and g ∈ G. As a particular
case of this, if X is a subset of Y satisfying gx ∈ X for all x ∈ X and g ∈ G,
then X is called G-stable, and the inclusion map is G-equivariant.

Example 1.2.3. The symmetric group S4 acts on the set
(
[4]
2

)
of unordered

pairs of distinct numbers in [4] := {1, 2, 3, 4} by g{i, j} = {g(i), g(j)}. Think of
the edges in a tetrahedron to visualise this action. The group S4 also acts on the
set X := {(i, j) | i, j ∈ [4] distinct} of all ordered pairs by g(i, j) = (g(i), g(j))—
think of directed edges—and the map X →

(
[4]
2

)
sending (i, j) to {i, j} is S4-

equivariant.

Definition 1.2.4. Let G be a group and let V be a vector space. A (linear)
representation of G on V is a group homomorphism ρ : G→ GL(V ).

If ρ is a representation of G, then the map (g, v) 7→ ρ(g)v is an action of G
on V . Conversely, if we have an action α of G on V such that α(g, .) : V → V is
a linear map for all g ∈ G, then the map g 7→ α(g, .) is a linear representation.
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As with actions, instead of ρ(g)v we will often write gv. A vector space with an
action of G by linear maps is also called a G-module.

Given a linear representation ρ : G → GL(V ), we obtain a linear represen-
tation ρ∗ : G → GL(V ∗) on the dual space V ∗, called the dual representation
or contragredient representation and defined by

(ρ∗(g)x)(v) := x(ρ(g)−1v) for all g ∈ G, x ∈ V ∗ and v ∈ V . (1.1)

Exercise 1.2.5. Let ρ : G → GLn(C) be a representation of G on Cn. Show
that with respect to the dual basis, ρ∗ is given by ρ∗(g) = (ρ(g)−1)T , where AT

denotes the transpose of the matrix A.

1.3 Invariant functions

Definition 1.3.1. Given a representation of a group G on a vector space V , a
regular function f ∈ O(V ) is called G-invariant or simply invariant if f(v) =
f(gv) for all g ∈ G, v ∈ V . We denote by O(V )G ⊆ O(V ) the subalgebra of
invariant functions. The actual representation of G is assumed to be clear from
the context.

Observe that f ∈ O(V ) is invariant, precisely when it is constant on the
orbits of V under the action of G. In particular, the constant functions are
invariant.

The representation of G on V induces an action on the (regular) functions
on V by defining (gf)(v) := f(g−1v) for all g ∈ G, v ∈ V . This way the
invariant ring can be discribed as the set of regular functions fixed by the
action of G: O(V )G = {f ∈ O(V ) | gf = f for all g ∈ G}. Observe that
when restricted to V ∗ ⊂ O(V ), this action coincides with the action corre-
sponding to the dual representation. In terms of a basis x1, . . . , xn of V ∗, the
regular functions are polynomials in the xi and the action of G is given by
gp(x1, . . . , xn) = p(gx1, . . . , gxn) for any polynomial p. Since for every d, G
maps the set of polynomials homogeneous of degree d to itself, it follows that
the homogeneous parts of an invariant are invariant as well. This shows that
O(V )G =

⊕
dO(V )G

d , where O(V )G
d := O(V )d ∩ O(V )G.

Example 1.3.2. Consider the representation ρ : Z/3Z → GL2(C) defined by
mapping 1 to the matrix

(
0 −1
1 −1

)
(and mapping 2 to

(−1 1
−1 0

)
and 0 to the identity

matrix). With respect to the dual basis x1, x2, the dual representation is given
by:

ρ∗(0) =
(

1 0
0 1

)
, ρ∗(1) = −1 −1

1 0 , ρ∗(2) =
(

0 1
−1 −1

)
. (1.2)

The polynomial f = x2
1 − x1x2 + x2

2 is an invariant:

ρ∗(1)f = (−x1−x2)2− (−x1−x2)(−x1) + (−x1)2 = x2
1−x1x2 +x2

2 = f, (1.3)
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and since 1 is a generator of the group, f is invariant under all elements of the
group. Other invariants are x2

1x2 − x1x
2
2 and x3

1 − 3x1x
2
2 + x3

2. These three
invariants generate the ring of invariants, althought it requires some work to
show that.

A simpler example in which the complete ring of invariants can be computed
is the following.

Example 1.3.3. Let D4 be the symmetry group of the square, generated by a
rotation r, a reflection s and the relations r4 = e, s2 = e and srs = r3, where e
is the identity. The representation ρ of D4 on C2 is given by

ρ(r) =
(

0 1
−1 0

)
, ρ(s) =

(
−1 0
0 1

)
, (1.4)

the dual representation is given by the same matrices:

ρ∗(r) =
(

0 1
−1 0

)
, ρ∗(s) =

(
−1 0
0 1

)
. (1.5)

It is easy to check that x2
1+x2

2 and x2
1x

2
2 are invariants, and so are all polynomial

expressions in these two invariants. We will show that in fact O(()C2)D4 =
C[x2

1 + x2
2, x

2
1x

2
2] =: R. It suffices to show that all homogeneous invariants

belong to R.
Let p ∈ C[x1, x2] be a homogeneous invariant. Since sp = p, only monomials

having even exponents for x1 can occur in p. Since r2s exchanges x1 and x2,
for every monomial xa

1x
b
2 in p, the monomial xb

1x
a
2 must occur with the same

exponent. This proves the claim since every polynomial of the form x2n
1 x2m

2 +
x2m

1 x2n
2 is an element of R. Indeed, we may assume that n ≤ m and proceed

by induction on n + m, the case n + m = 0 being trivial. If n > 0 we have
q = (x2

1x
2
2)n(x2m−2n

2 +x2m−2n
1 ) and we are done. If n = 0 we have 2q = 2(x2m

1 +
x2m

2 ) = 2(x2
1+x2

2)m−
∑m−1

i=1

(
m
i

)
(x2i

1 x
2m−2i
2 ) and we are done by induction again.

1.4 Conjugacy classes of matrices

In this section we discuss the polynomial functions on the square matrices,
invariant under conjugation of the matrix variable by elements of GLn(C). This
example shows some tricks that are useful when proving that certain invariants
are equal. Denote by Mn(C) the vectorspace of complex n × n matrices. We
consider the action of G = GLn(C) on Mn(C) by conjugation: (g,A) 7→ gAg−1

for g ∈ GLn(C) and A ∈ Mn(C). We are interested in finding all polynomials
in the entries of n× n matrices that are invariant under G. Two invariants are
given by the functions A 7→ detA and A 7→ traceA.

Let χA(t) := det(tI−A) = tn−s1(A)tn−1 +s2(A)tn−2−· · ·+(−1)nsn(A) be
the characteristic polynomial of A. Here the si are polynomials in the entries
of A. Clearly, χgAg−1(t) = det(g(tI − A)g−1) = det(tI − A) = χA(t) for all
t ∈ C. It follows that the functions s1, . . . , sn are G-invariant. Observe that
s1(A) = traceA and sn(A) = detA.
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Proposition 1.4.1. The functions s1, . . . , sn generate O(Matn(C))GLn(C) and
are algebraically independent.

Proof. To each c = (c1, . . . , cn ∈ Cn we associate the so-called companion matrix

Ac :=



0 · · · · · · 0 −cn

1
. . .

... −cn−1

0
. . . . . .

...
...

...
. . . . . . 0 c2

0 · · · 0 1 c1


∈Mn(C). (1.6)

A simple calculation shows that χAc
(t) = tn + cn−1t

n−1 + · · ·+ c1t+ c0.

Exercise 1.4.2. Verify that χAc(t) = tn + cn−1t
n−1 + · · ·+ c1t+ c0.

This implies that si(Ac) = (−1)ici and therefore

{(s1(Ac), s2(Ac), . . . , sn(Ac) | A ∈Mn(C)} = Cn. (1.7)

It follows that the si are algebraically independent over C. Indeed, suppose that
p(s1, . . . , sn) = 0 for some polynomial p in n variables. Then 0 = p(s1, . . . , sn)(A) =
p(s1(A), . . . , sn(A)) for all A and hence p(c1, . . . , cn) = 0 for all c ∈ Cn. But
this implies that p itself is the zero polynomial.

Now let f ∈ O(Matn(C))G be an invariant function. Define the polyno-
mial p in n variables by p(c1, . . . , cn) := f(Ac), and P ∈ O(Matn(C))G by
P (A) := p(−s1(A), s2(A), . . . , (−1)nsn(A)). By definition, P and f agree on
all companion matrices, and since they are both G-invariant they agree on
W := {gAcg

−1 | g ∈ G, c ∈ Cn}. To finish the proof, it suffices to show that W
is dense in Matn(C) since f − P is continuous and zero on W . To show that
W is dense in O(Matn(C)), it suffices to show that the set of matrices with n
distinct nonzero eigenvalues is a subset of W and is itself dense in O(Matn(C)).
This we leave as an exercise.

Exercise 1.4.3. Let A ∈ Matn(C) have n distinct nonzero eigenvalues. Show
that A is conjugate to Ac for some c ∈ Cn. Hint: find v ∈ Cn such that
v,Av,A2v, . . . , An−1v is a basis for Cn. You might want to use the fact that
the Vandermonde determinant

det


1 . . . 1
c1 . . . cn
c21 . . . c2n
...

. . .
...

cn−1
1 · · · cn−1

n

 (1.8)

is nonzero if c1, . . . , cn are distinct and nonzero.
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Exercise 1.4.4. Show that the set of matrices with n distinct nonzero eigen-
values is dense in the set of all complex n × n matrices. Hint: every matrix is
conjugate to an upper triangular matrix.

1.5 Exercises

Exercise 1.5.1. Let G be a finite group acting on V = Cn, n ≥ 1. Show that
O(V )G contains a nontrivial invariant. That is, O(V )G 6= C. Give an example
of an action of an infinite group G on V with the property that only the constant
functions are invariant.

Exercise 1.5.2. Let ρ : Z/2Z→ GL2(C) be the representation given by ρ(1) :=(−1 0
0 −1

)
. Compute the invariant ring. That is, give a minimal set of generators

for O(C2)Z/2Z.

Exercise 1.5.3. Let U := {( 1 a
0 1 ) | a ∈ C} act on C2 in the obvious way. Denote

the coordinate functions by x1, x2. Show that O(C2)U = C[x2].

Exercise 1.5.4. Let ρ : C∗ → GL3(C) be the representation given by ρ(t) =(
t−2 0 0
0 t−3 0
0 0 t4

)
. Find a minimal system of generators for the invariant ring.

Exercise 1.5.5. Let π : Matn(C)→ Cn be given by π(A) := (s1(A), . . . , sn(A)).
Show that for every c ∈ Cn the fiber {A | π(A) = c} contains a unique conjugacy
class {gAg−1 | g ∈ GLn(C)} of a diagonalizable (semisimple) matrix A.


