Invariant theory homework exercises week 4

September 29, 2009

- Let V be a G-module and ⟨,⟩ a G-invariant inner product on V. Show that for any two non-isomorphic, irreducible submodules V₁, V₂ ⊂ V we have V₁ ⊥ V₂, i.e. for all v₁ ∈ V₁, v₂ ∈ V₂ it holds that ⟨v₁, v₂⟩ = 0.
 Give an example where V₁ ⊥ V₂ when V₁ and V₂ are isomorphic as G-modules.
- 2. Let the symmetric group on 3 letters S_3 act on $\mathbb{C}[x_1, x_2, x_3]_2$ by permuting the variables. This action makes $\mathbb{C}[x_1, x_2, x_3]_2$ into a S_3 -module. Give the decomposition of this module.
 - Note that $\mathbb{C}[x_1, x_2, x_3]_2$ is the vector space of homogeneous polynomials of degree 2.