HINTS FOR WEEK 5'S EXERCISES

(1) Please try to solve this exercise under the additional assmption that for every polynomial $f = f_0 + f_1 + \ldots + f_d \in A$, where f_i is a polynomial in which all terms have total degree i, the homogeneous parts f_i of f are all in A

Bonus: prove or disprove the statement without this extra assumption.

- (2) Here are some facts about finite Abelian groups G that you may want to use:
 - (a) Every irreducible representation U of G is 1-dimensional. Hence for every $g \in G$ there is a unique number $\chi_U(g) \in \mathbb{C}^*$ such that $gu = \chi_U(g)u$ for all $u \in U$. We have $\chi_U(gh) = \chi_U(g)\chi_U(h)$, that is, χ is a homomorphism from G to \mathbb{C}^* . Conversely, every homomorphism $\chi: G \to \mathbb{C}^*$ gives rise to a one-dimensional representation of G.
 - (b) The homomorphisms $\chi: G \to \mathbb{C}^*$ form an Abelian group \check{G} with point-wise multiplication: $(\chi_1\chi_2)(g) := \chi_1(g)\chi_2(g)$.
 - (c) The group \check{G} , called the *dual group* or *character group* of G, is isomorphic to G.