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(2) a(gh,z) = alg,a(h,z)) for all z € X and g,h € G.

Usually, the letter « is omitted, and we write gz or g -  instead of «a(g, z).
Recall that the map sending g to a(g,.), which itself is a function X — X, is a
homomorphism from G into the group Sym X of all bijections from X into itself.
In an algebra course, you have already encountered several group actions:

EXAMPLE 3.2. (1) The automorphism group of a graph acts on the ver-
tices of the graph (in such a way that connected vertices are mapped to
connected vertices, and non-connected vertices to non-connected vertices).

(2) A group acts on itself by conjugation.

(3) A group acts on itself by left multiplication.

(4) More generally, if H is a subgroup of G, then G acts by left multiplication
on the set G/H of left cosets of H.

DEFINITION 3.3 (Stabiliser, orbit, homogeneous space, group quotient). For
given z € X, we call
Gy ={9€G|gr=1}
the stabiliser of x and
Gz :={gz | g € G}
the orbit of z. If X = Gz for some (and hence all) z € X, then G is said to act
transitively on X, and X is called a homogeneous space under the action of G.

If H is a subgroup of G, then G/H is by definition the set of left cosets gH of
H in G. This is in general only a set (though if H is a normal subgroup, then it
carries a natural group structure). Recall the following well-known lemma.

LEMMA 3.4. Let G be a group acting on a set X, and let x € X. Then the map
G — X, g gz factorises through G — G/G, and a unique map ¢ : G/G, — X,
which is a bijection onto the orbit Gz.

PRrROOF. Write H := G,. That 1 is unique follows from the surjectivity of
G — G/H—indeed, we must have 1(gH) = gz for all ¢ € G. Now we claim
that this defines 1) unambiguously. Well, suppose that gH = ¢’ H. Then we have
g’ = gh for some h € H, so that ¢’r = ghax = gz as h stabilises . So, indeed, 1 is
well-defined. Now 1) certainly maps G/H surjectively onto the orbit of z, so that
we need only verify that ¢ is injective. Well, if ¢(gH) = ¢ (¢’H), then gz = ¢'z,
so that g~ !¢’ € G, = H and hence gH = ¢'H. O

EXERCISE 3.5. Consider the action of GLy(C) on P(C) given by

[(Z 2} (z:y) = (az + by : cx + dy),

or in the affine chart consisting of points (z : 1):
a b az+b
2= ——
c d cz+d’
so-called Mdbius transformations. This action gives a map p : GL2(C) — Sym(P(C)).

(1) What is the kernel of this action? In other words, which matrices g fix all
points in P*(C)?
(2) What is the stabiliser of 0 in GL,,?
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(3) Show that the image of p is generated by the transformations z — az,
zrz+b 2z 1)z

(4) Show that every element of GL5(C) maps (ordinary) circles and lines in
C to circles and lines in C. Hint: show that z — 1/z permutes circles
that do not pass through 0, permutes lines through 0, and maps circles
through 0 to lines not through 0 and vice versa.

4. Homogeneity of projective spaces
We will now show that PV is homogeneous under a suitable group action.

DEFINITION 4.1. We write GL(V) for the set of all invertible linear maps V' —
V and GL,(K) for the group of invertible n x n-matrices with entries in K.

The group GL(V) acts on the set of (m — 1)-dimensional projective subspaces
of P(V) as follows: if W is an m-dimensional vector subspace of V' and g € GL(V),
then {gw | w € W} is also m-dimensional (as g is invertible), and we denote this
space by gW; this gives the action of g. In particular, if we take m = 1, this gives an
action of G on projective points. Note that relative to a basis of V' we can identify
GL(V) with GL,, and then the action is just by matrix-vector multiplication on
homogeneous coordinates. Here is a trivial, but very useful lemma.

LEMMA 4.2. Let g € GL(V) and let P,Q be projective subspaces of PV. Then
P and Q are incident if and only if gP, gQ are incident.

(In other words, the group GL(V') acts by automorphisms on the graph whose
vertices are projective subspaces of PV and whose edges represent incidence.)

LEMMA 4.3. The homomorphism GL(V) — Sym(PV) given by the action of
GL(V) on (the points of) PV has as kernel precisely the scalar multiples of the
identity map.

PROOF. An element g € GL(V) lies in the kernel if and only if it maps every
one-dimensional subspace of V into itself. The scalar multiples of I certainly do
this. Conversely, let ¢ do this, and let v € V' \ {0} and A € K* with gv = Av. We
claim that ¢ = AI. Indeed, for any w ¢ Kv we have g(v + w) = Av + pw for some
u € K, and the latter expression in turn is a scalar multiple of v + w. But then
1 = A by linear independence of v and w. O

DEFINITION 4.4. The group GL(V)/{cI | ¢ € K*} is called the projective linear
group and denoted PGL(V). If V = K™, then this group is also denoted PGL,,(K).

PROPOSITION 4.5. Still writing n = dim 'V, the group GL(V) acts transitively
on the set of ordered (n + 1)-tuples of projective points with the property that each
n-tuple of them is projectively independent.

PrOOF. Let (p1,...,pns+1) and (qi1,...,qnt1) be two such tuples of points.
For i = 1,...,n+1 let v; be a non-zero vector in the one-dimensional subspaces
p;- Then vy,...,v, is a basis of V, hence we can write v,11 = Zicivi. The
condition on the p; implies that all ¢; are non-zero, hence by replacing vy, ..., v,
by the scalar multiples cjvy, ..., ¢,v, (which represent the same points p1,...,Dy),
we may assume that all ¢; are 1. Similarly choose wy,...,w,, wy+1 representing
q1,---,qn+1 and satisfying wy,41 = Z?:l w;. Now since vq,...,v, are a basis of



