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F1GURE 1. Desargues’ configuration

LEMMA 2.4. ¢ and 1 are (well-defined) bijections between P and P and each
other’s inverses. Moreover, ¢ maps lines in L bijectively to lines in L and wvice
versa.

EXERCISE 2.5. Prove this lemma.

One of the advantages of the definition of P?(R) is that all points look alike.
Indeed, the following exercise shows that you could take any line in £ to be the line
at infinity.

EXERCISE 2.6. Let [ be any line in P?(R). Show that there are ¢ and v with
the properties of the lemma for which ¢(l) = .

3. Some classical geometry
Here is an old theorem by Desargues.
THEOREM 3.1. In Figure 1, the points H, K, L lie on a line.

This figure lives in the real projective plane, but by Exercise 2.6 we may assume
that all the action takes place in good old R2.

Proor. Consider the projection 7 : R® — R? onto the first two coordinates.
A lift of P € R? is a point P’ € R3 with w(P’) = P. For each of the points
A, B,C, D choose lifts A, B',C’", D' that do not lie on a plane (this is possible).
This determines unique lifts F’,..., L’ of E,..., L by the requirement that A’ B'FE’
etc. are lines in R3. Now B’C’'D’ and E'F'G’ are distinct planes (otherwise C”
would lie on the plane B'D’'E’ = A’B’D’), and their intersection contains each
of the points H’, K’,L’. Hence these lie on a line, and so do their projections
K, L. O



8 1. THE REAL PROJECTIVE PLANE

FIGURE 2. A closed path in P.

Philosophy. It is crucial in this proof that the configuration
can be seen as a configuration in a higher-dimensional space.
We might later encounter geometries satisfying the basic axioms
for projective planes, in which Desargues’ theorem does not hold.
Indeed, Desargues’ theorem, stated as an axiom, turns out to be
exactly the extra condition needed for a projective plane to be
coordinatisable!

EXERCISE 3.2. Consider the graph with 10 vertices A, B, ..., H, K, L and 10,
where the vertices are connected by an edge if they do not lie on any of the lines
drawn in Figure 1, nor on the line H, K, L. whose existence is stated by Desargues
theorem. Do you recognise this graph? What is its automorphism group?

4. Visualising P?(R) and some strange consequences

In this section T want to give you a grasp on the real projective plane, and show
how different it is from the Euclidean plane!

Let S? := {(x,y,2) | 22 + y*> + 22 = 1} be the 2-sphere in R?. Let 7 be the
map from S? to P sending a point v to the projective point Rv € P. Note that 7
is 2-to-1: every point p in P corresponds to a 1-dimensional subspace of R, which
intersects S? in exactly 2 points—both of whose images under 7 are p. Similarly,
every line [ in P?(R) corresponds to a 2-dimensional subspace V of R®, hence to
a circle on S? centered at the origin usually called great circles and this great
circle is mapped by 7 onto . We often only draw the upper half sphere, seen from
above, remembering that opposite points on the bordering circle correspond to the
same point.

Forget about the lines for a moment, and just consider the point set P. This set
comes with a natural topology. If you do not know what a topology is, then don’t
worry too much (but do take the next opportunity in your mathematics career to
learn it!): it is a structure on P which says what maps to and from P (from and
to other topological spaces) are continuous. (If you do know what a topological
space is: a subset of P is called open if its preimage under 7 in S? is open.) For
instance, Figure 2 depicts the image of a continuous closed path, i.e., a continuous
map c: [0,1] — P with ¢(0) = ¢(1)—recall that opposite points on the circle are to
be identified!

4.1. Compactness. By definition of the topology on P, the surjective map
7 : 8% — P is continuous. Since S2 is compact, so is P. Note that this is already
quite a difference with R?: by adding the line at infinity, we have embedded R?
into a nice compact space.
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FIGURE 3. Another closed path in P (left), and its deformation.

4.2. Not simply connected. If you have any loop in the R?, given by a
continuous map v : [0,1] — R? with v(0) = ~(1), then you can deform it con-
tinuously, while keeping v(0) and ~(1) fixed, to a single point for instance by
setting v:(s) = v(0) + (1 — t)(v(s) — v(0)). At time ¢ = 0 this is the original loop,
and for ¢ = 1 it is the loop mapping all of [0,1] to v(0), and for all ¢ we have
1(0) = (1) = ~(0) = 7(1).

By contrast, when you try to deform the loop in Figure 2 to a point, you will
have a hard time. On the other hand, the loop in Figure 3 can be continuously
deformed to a point. Where is the difference? Well, one can prove that given
any loop v : [0,1] — P%(R) and given a pg € 7 1(7(0)) (for which there are two
choices), there is a unique continuous path 4/ : [0,1] — S? such that 7/(0) = p and
m(v/(t)) = ~(t) for all t. However, this 7' need not “close up”, that is, it need not
be a loop: 7/(1) is either equal to py or to —pg (as it maps to (0)). If it is equal to
Po, then one can deform 4/ to a point in S2—though this requires some work! The
image will then deform to a point in P?(R). But if 4/(1) = —pg then, deforming ~y
continuously while keeping v(0), (1) fixed and lifting the deformation to 7, with
7:(0) = po, we will have (1) = —py for all ¢. Indeed, by continuity the endpoint
cannot suddenly jump from —pgy to pg. This proves that v in Figure 2 cannot be
deformed into a point.

The upshot of this is first, that P?(R) behaves topologically very different from
R2, and second, that there is a well-defined map from loops in P2(R) to {—1,1},
sending a loop to 1 if its lift to S? closes up, and to —1 otherwise. Of course none
of this is very rigorous, and one has to do quite some work to make it so. But here
is the main idea that you should remember from it.

Philosophy. Associating to a topological object (here P) an
algebraic object (here Z/27), which captures qualitative infor-
mation about the space, is extremely useful in mathematics. For
instance, the idea has far-reaching generalisations in knot theory.

4.3. Embedding graphs in the projective plane. By now you must have
learned Kuratowski’s theorem, which states that a(n undirected) graph is non-planar
if and only if it has no minor isomorphic to K5 or Kz 3. Here planar means that
you embed it into the Euclidean plane, i.e., draw it in the Euclidean plane without
intersecting edges. (More formally, it means that there are no injective continous
maps from the graph with an appropriate topology to the Euclidean plane.)

But you can embed K5 and K33 in P! Indeed, you can even restrict the edges
to be projective line segments, i.e., segments of elements from £. For K33 this is
shown in Figure 4.

EXERCISE 4.1. Show that you can also embed K5 into P. What about Kg?



