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2Directed graphical models

Setting
• finite, directed acyclic graph G = (V, E) (DAG)
• for every i ∈ V a random variable Xi; for S ⊆ V write XS

We’ll discuss two scenarios:
• either all Xi take finitely many values, in [ri] say
• or the Xi are jointly Gaussian with mean zero

Write pa(i) for the set of j ∈ V with j→ i an arrow in G—the
parents of i, and nd(i) for the non-descendents of i.

In both scenarios we’ll discuss the implications of the following
hypothesis: Xi ⊥⊥ Xnd(i)\pa(i) | Xpa(i) for all i ∈ V , and we’ll give
examples with latent variables.



3Discrete setting

Write Yi = Xnd(i)\pa(i). Then Xi ⊥⊥ Yi | Xpa( j) means that Prob(Xi =

x ∧ Y = y | Xpa(i) = z) = Prob(Xi = x | Xpa(i) = z) · Prob(Yi = y |
Xpa(i) = z).

Example
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Prob(XV = x) = Prob(X6 = x6 ∧ X45 = x45 ∧ X123 = x123) =
Prob(X6 = x6 ∧ X123 = x123 | X45 = x45) · Prob(X45 = x45) =
θ6,x6,x45 · Prob(X12345 = x12345) = θ6,x6,x45θ5,x5θ4,x4,x23θ3,x3θ2,x2,x1θ1,x1

θi,x,z

This is a proof by example of the recursive factorisation theorem.

Detailed study of the ideal of the image (when one imposes
the condition that

∑
x θi,x,z = 1) was done by Garcia-Sturmfels-

Stillman.



4Example of latent variables: phylogenetics
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X1, X2, X3, X4 all take values in {A,C,G,T }

Prob(X1234 = x1234) = θ2,x2,x1θ3,x3,x1θ4,x4,x1θ1,x1

Forget about constraints on the θ. Then for fixed x1 this is the
(x2, x3, x4)-entry of a general rank-1 tensor of format 4 × 4 × 4.
But now imagine X4 is a random variable associated to DNA of an
extinct species, and cannot be observed. Then what counts is the
marginal distribution:
Prob(X234 = x234) =

∑
x1∈{A,C,G,T } Prob(X1234 = x1234), which is the

x2, x3, x4-entry of a general rank-four tensor.
Set-theoretic equations for rank-four tensors of forrmat 4 × 4 × 4
were found by Friedman-Gross.



5The Allman-Rhodes reduction

What about bigger trees? 1
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∑
x1,x4

θ2,x2,x1θ3,x3,x1θ4,x4,x1θ5,x5,x4θ6,x6,x4
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=
∑

x7
(
∑

x1
θ2,x2,x1θ3,x3,x1θ

′
7,x7,x1

)(
∑

x4
θ5,x5,x4θ6,x6,x4θ

′′
7,x7,x4

)

provided that θ4,x4,x1 =
∑

x7
θ′7,x7,x1

· θ′′7,x7,x4

The model for the bigger tree is the matrix product of
the models for the smaller trees.



6The Allman-Rhodes reduction

More precisely: for every finite tree T let XT be the Zariski closure
inside V⊗leaves(T ) of the set of probability tensors obtained as the
parameters θ vary. Here V = C4 with the standard bilinear form
(.|.).
Pick an edge e ∈ T and split T as follows:

e
q q

T T1 T2

Lemma
XT = XT1 · XT2 where · is the bilinear map V⊗L1 ⊗ V⊗{q} × V⊗{q} ⊗
V⊗L2 → V⊗L given by (A ⊗ v,w ⊗ B) 7→ (v|w)A ⊗ B



7A theorem about product of matrix varieties

Theorem (Allman-Rhodes, Draisma-Kuttler)
Let X ⊆ Cm×k and Y ⊆ Ck×n be closed subvarieties, both GLk-
stable (via right- and left- multiplication, respectively). Then
X · Y = {z ∈ Cm×n | z ·Cn×k ⊆ X and Ck×m · z ⊆ Y and rkz ≤ k}, and
the corresponding statement holds at the level of ideals, as well.

This reduces the study of equations for phylogenetic models on
general trees to that of claw trees. For trivalent trees with all nodes
taking 4 values, the Friedman-Gross result gives equations for all
tree models.
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