Applied algebraic geometry: algebraic statistics

Jan Draisma, Universität Bern

Monomial orders

A total order on monomials in $K[x_1, ..., x_n]$ is called a *monomial* order if it is a well-order and satisfies $x^{\alpha} > x^{\beta} \Rightarrow x^{\alpha+\gamma} > x^{\beta+\gamma}$ (*)

Lemma

A total order on monomials satisfying (*) is a monomial order if and only if $x^{\alpha} \ge 1$ for all α .

Proof

If it is a monomial order, then $1 > x^{\alpha} =: m$ would imply $1 > m > m^2 > \cdots$, a contradiction. Conversely, assume that a total order on monomials satisfies $x^{\alpha} \ge 1$ for all α , and assume that there is an infinite decreasing sequence $x^{\alpha_1} > x^{\alpha_2} > \dots$ Then by Dickson's lemma $\exists i < j$ with $\alpha_j - \alpha_i =: \beta \in \mathbb{Z}_{\ge 0}^n$. But now $x^{\beta} \ge 1$ and hence by (*) also $x^{\alpha_j} = x^{\beta + \alpha_i} \ge x^{\alpha_i}$, a contradiction. So > is a well-order satisfying (*) and hence a monomial order.

Example

 $x^{\alpha} > x^{\beta}$ if and only if $\alpha \neq \beta$ and the first non-zero entry of $\alpha - \beta$ is positive is a monomial order, called the *lexicographic order*.

There are many other monomial orders. (Uncountably many if the number of variables is > 1.)

Definition

Fix a monomial order. For $f \in K[x_1, ..., x_n]$ the *leading monomial* LM(f) is the largest monomial with nonzero coefficient in f.

Definition

Let *I* be an ideal in $K[x_1, ..., x_n]$. A subset $G \subseteq I$ is called a *Gröbner basis* relative to the monomial order > if for each $f \in I$ nonzero there is some $g \in G$ with LM(g)|LM(f).

Lemma

Any Gröbner basis of *I* generates *I*.

Theorem (Hilbert's basis theorem)

Every ideal in $K[x_1, ..., x_n]$ has a finite Gröbner basis.

Proof: Dickson's lemma implies that | is a wpo. Hence LM(I) := $\{LM(f) \mid f \in I\}$ has finitely many |-minimal elements u_1, \ldots, u_l . Then pick $f_i \in I$ with LM(f_i) = u_i ; these form a GB.

For every n set $R_n := K[x_{ij} \mid i = 1, ..., k, j = 1, ...n]$. For each increasing map $\pi : [m] \to [n]$ we have an algebra homomorphism $\pi : R_m \to R_n$ determined by $\pi x_{ij} = x_{i\pi(j)}$.

Theorem (Aschenbrenner-Hillar, Cohen)

For each n, let $I_n \subseteq R_n$ be an ideal, such that for each increasing map $\pi : [m] \to [n]$ we have $\pi I_m \subseteq I_n$. Then there is a finite sequence n_1, \ldots, n_p such that for each n, I_n is generated by the images of I_{n_1}, \ldots, I_{n_p} in I_n under all increasing maps $[n_i] \to [n]$.

Proof

• In each R_n choose a monomial order such that for all increasing maps $\pi : [m] \to [n]$ we have $x^{\alpha} > x^{\beta}$ in R_m implies $\pi x^{\alpha} > \pi x^{\beta}$ in R_n .

- Let $u := x^{\alpha} \in R_m$ and $v := x^{\beta} \in R_n$ with $n \ge m$. We write u|v if there exists an increasing $\pi : [m] \to [n]$ such that πu divides v.
- In terms of the exponent vectors, think of $\alpha, \beta \in (\mathbb{Z}_{\geq 0}^k)^*$. Then this is precisely the partial order in Higman's lemma applied to the componentwise order in $\mathbb{Z}_{\geq 0}$, so in particular a w.p.o.
- The set $U := \{ LM(f) \mid f \in I_n, n \in \mathbb{N} \}$ is upwards closed in the partial order |; let M be its |-minimal elements. By wpo, it is finite: $M = \{u_1, \ldots, u_l\}$
- For each i let f_i be an element of the corresponding I_{n_i} with LM(f) = u.
- Like in the proof of Hilbert's basis theorem, one finds that for each $n \in \mathbb{N}$, the elements πf_i where i = 1, ..., n and $\pi : [n_i] \to [n]$ increasing generate I_n .

Setting

d random variables taking values in $[r_j]$, j = 1, ..., d

 \mathcal{F} a collection of subsets of [d]; for each $A \in \mathcal{F}$ and $\alpha \in \prod_{j \in A} [r_j]$ have a parameter $c_{A,\alpha}$

For $\alpha \in \prod_{j \in [d]} [r_j]$ have $\text{Prob}(\alpha) = \prod_{A \in \mathcal{F}} c_{A,\alpha|_A}$ (forget normalisation).

Thus have monomial map

$$\varphi: K[y_{\alpha} \mid \alpha \in \prod_{j} [r_j]] \to K[c_{A,\beta} \mid A \in \mathcal{F}, \beta \in \prod_{j \in A} [r_j]].$$

Theorem (Independent set theorem, Hillar-Sullivant)

Fix \mathcal{F} and a subset $T \subseteq [d]$. If $|T \cap A| \le 1$ for all $A \in \mathcal{F}$, then $\ker \varphi$ is generated in bounded degree if we fix the r_j with $j \in [d] \setminus T$ and we let the r_j with $j \in T$ be arbitrary elements of $\mathbb{Z}_{\ge 0}$.

- restrict to the case where all r_j with $j \in T$ are equal to a single number, n, and where all $A \in \mathcal{F}$ contain precisely one element $j_A \in T$.
- Set $S_n := K[y_{\alpha,\gamma} \mid \alpha \in \prod_{j \notin T} [r_j], \gamma \in [n]^T]$ and $Q_n := K[x_{A,\beta,i} \mid A \in \mathcal{F}, \beta \in \prod_{j \in A \setminus T} [r_j], i \in [r_{j_A}]]$, and we study the kernel of the homomorphism $\varphi : S_n \to Q_n, y_{\alpha,\gamma} \mapsto \prod_{A \in \mathcal{F}} x_{A,\alpha|_{A \setminus T},\gamma_{j_A}}$
- Let $R_n := K[z_{\alpha,i} \mid \alpha \in \prod_{j \notin T} [r_j], i \in [n]]$, and note that φ decomposes as $\varphi_2 \circ \varphi_1$ where $\varphi_1 : S_n \to R_n, y_{\alpha,\gamma} \mapsto \prod_{j \in T} z_{\alpha,\gamma_j}$ and $\varphi_2 : R_n \to Q_n, z_{\alpha,i} \mapsto \prod_{A \in \mathcal{F}, i \in A} x_{A,\alpha|_{A \setminus T},i}$
- φ_1 is the parameterisation of $k := \prod_{j \notin T} r_j$ -tuples of rank-one tensors, hence $\ker \varphi_1$ generated by 2×2 -minors of flattenings. Its image is a subring of R_n , for which we have a Noetherianity result. This Noetherianity turns out to carry over to the image.