Applied algebraic geometry: algebraic statistics

Jan Draisma, Universität Bern

In more complicated models, do such connected graphs exist?

Definition

Let $A \in \mathbb{Z}_{\geq 0}^{m \times n}$. A *Markov basis* for A is a subset S of ker A: $\mathbb{Z}^n \to \mathbb{Z}^m$ with the property that if $u, v \in \mathbb{Z}_{\geq 0}^n$ satisfy Au = Av, then there exists a sequence $u_0 = u, u_1, \dots, u_k = v$ in $\mathbb{Z}_{\geq 0}^n$ such that $u_i - u_{i+1} \in \pm S$ for all i.

In our 2×2 -table example, m = n = 4 and A looks like this:

	(1, 1)	(1, 2)	(2, 1)	(2, 2)
row 1	1	1		
row 2			1	1
column 1	1		1	
column 2		1		1

Observation

If S is a Markov basis for A, then for every $b \in A\mathbb{Z}_{\geq 0}^n$ the *fibre* $(A^{-1}b) \cap \mathbb{Z}_{\geq 0}^n$ is connected via moves of the form $v \mapsto v + u$ with $u \in \pm S$. If S is finite and $(\ker A) \cap \mathbb{Z}_{\geq 0} = \{0\}^n$, then this fibre is finite for every b, and we have a finite graph as required by M-H.

Theorem (Diaconis-Sturmfels)

For any $A \in \mathbb{Z}_{\geq 0}^{m \times n}$ there exists a finite Markov basis.

Proof

Consider the \mathbb{Z} -algebra homomorphism $\varphi : \mathbb{Z}[y_1, \dots, y_n] \to \mathbb{Z}[x_1, \dots, x_m]$ that sends y_j to $x^{Ae_j} := \prod_{i=1}^m x_i^{a_{ij}}$.

Note that $\varphi y^u = x^{Au}$ for all $u \in \mathbb{Z}_{\geq 0}^n$.

Suppose that $f = \sum_{u} c_{u} y^{u} \in \ker \varphi$. Then $0 = \sum_{u} c_{u} x^{Au}$, and hence for each fixed $b \in A\mathbb{Z}_{\geq 0}^{n}$ we have $\sum_{u \in (A^{-1}b) \cap \mathbb{Z}_{\geq 0}^{n}} c_{u} = 0$. This implies that f lies in the \mathbb{Z} -span of all *binomials* $x^{u} - x^{v}$ where $u, v \in \mathbb{Z}_{\geq 0}^{n}$ satisfy Au = Av. Conversely, these binomials lie in $\ker \varphi$.

So, by Hilbert's basis theorem, $\ker \varphi$ generated by finitely many binomials $x^{u_i} - x^{v_i}$, i = 1, ..., k where $u_i, v_i \in \mathbb{Z}_{\geq 0}^n$ satisfy $Au_i = Av_i$ and moreover supp $(u_i) \cap \text{supp}(v_i) = \emptyset$ for all i.

Set $S := \{u_i - v_i \mid i = 1, ..., k\}$. We claim that this is a Markov basis. Indeed, suppose that Au = Av where $u, v \in \mathbb{Z}_{\geq 0}$. Then $y^u - y^v \in \ker \varphi$ and hence $y^u - y^v = \sum_{i=1}^k f_i(y^{u_i} - y^{v_i})$ for suitable polynomials f_i .

Rewrite this as $y^{u} - y^{v} = \sum_{j=1}^{l} \pm y^{w_{j}} (y^{u_{i_{j}}} - y^{v_{i_{j}}}).$

Then there is a p such that either $w_p + u_{i_p}$ or $w_p + v_{i_p}$ equals u and has sign +1 on the left. Wlog consider the first case.

Then $u' := u - u_{i_p} + v_{i_p} \in u - S \cap \mathbb{Z}^n_{\geq 0}$ is another element in the fibre through u, and $y^{u'} - y^v = \sum_{j \neq p} \pm y^{w_j} (y^{u_{i_j}} - y^{v_{i_j}})$.

Continuing in this fashion we obtain a path from u to v by means of steps from $\pm S$, while keeping all entries nonnegative. \Box

Exercise

Show that, conversely, if S is a Markov basis of A, then $\ker \varphi$ is generated by all binomials of the form $y^{u_+} - y^{u_-}$ where u_+ is the componentwise maximum of u and u and u is the componentwise maximum of u and u (so that $u = u_+ - u_-$).

Consequence

The ideal of {rank-one matrices} is generated by 2×2 -minors.

This is a model for three random variables X_1, X_2, X_3 taking values in $[r_1], [r_2], [r_3]$, respectively.

 $p_{ijk} = \text{Prob}(X_1 = i, X_2 = j, X_3 = k)$ equals $a_{jk}b_{ik}c_{ij}$ (normalised such that the probabilities add up to 1)

To use the MH-algorithms for rejecting/accepting that an $r_1 \times r_2 \times r_3$ -table of observations comes from this distribution, one needs to sample tables M with prescribed marginals labelled (j,k),(i,k),(i,j) (in total, $r_2r_3+r_1r_3+r_1r_2$ marginals). For instance, m_{+ik} .

This pair represents a possible element of the Markov basis. As $r_3 = 2$ and $r_1, r_2 = n \rightarrow \infty$, the maximal degree necessarily grows.

Setting

d random variables taking values in $[r_j]$, j = 1, ..., d

 \mathcal{F} a collection of subsets of [d]; for each $A \in \mathcal{F}$ and $\alpha \in \prod_{j \in A} [r_j]$ have a parameter $c_{A,\alpha}$

For $\alpha \in \prod_{j \in [d]} [r_j]$ have $\text{Prob}(\alpha) = \prod_{A \in \mathcal{F}} c_{A,\alpha|_A}$ (forget normalisation).

Example

Independence: $\mathcal{F} = \{\{1\}, ..., \{d\}\}.$

No 3-way interaction: $\mathcal{F} = \{\{2, 3\}, \{1, 3\}, \{1, 2\}\}$

Theorem (Independent set theorem, Hillar-Sullivant)

Fix \mathcal{F} and a subset $T \subseteq [d]$. If $|T \cap A| \le 1$ for all $A \in \mathcal{F}$, then the Markov degree of the model is bounded as we fix r_j with $j \in [d] \setminus T$ and we let the r_j with $j \in T$ arbitrary elements of $\mathbb{Z}_{\ge 0}$.

Definition

A partial order \leq on S is called a *well-partial order* if for all $s_1, s_2, \ldots \in S$ there exist i < j with $s_i \leq s_j$.

Exercise

If (S, \leq) is wpo then each sequence s_1, s_2, \ldots has an infinite ascending subsequence $s_{i_1} \leq s_{i_2} \leq \cdots$ where $i_1 < i_2 < \ldots$

Lemma

If S, T are wpo, then so is $S \times T$ ordered by $(s, t) \le (s', t')$ if and only if $s \le s'$ and $t \le t'$.

Corollary (Dickson's Lemma)

 $\mathbb{Z}_{\geq 0}^n$ with $\alpha \leq \beta$ iff $\beta - \alpha \in \mathbb{Z}_{\geq 0}^n$ is wpo.

Higman's Lemma

If (S, \leq) is wpo, then so is $S^* := \bigcup_n S^n$ with the partial order $(s_1, \ldots, s_m) \leq (t_1, \ldots, t_n)$ if and only if $\exists \pi : [m] \rightarrow [n]$ strictly increasing such that $s_i \leq t_{\pi(i)}$ for each $i \in [m]$.

Proof

If not, then there is a counterexample $s^1, s^2, ...$ where the length of s^i is minimal among all counterexamples starting with $s^1, ..., s^{i-1}$.

None of the \mathbf{s}^i is the empty string (); so write $\mathbf{s}^i = (a_i, \mathbf{t}^i)$.

There exists a subsequence $i_1 < i_2 < \dots$ such that $a_{i_1} \le a_{i_2} \le \dots$ in the wpo S.

Check: then $\mathbf{s}^1, \dots, \mathbf{s}^{i_1-1}, \mathbf{t}^{i_1}, \mathbf{t}^{i_2}, \dots$ is a smaller counterexample. \square