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2The Diaconis-Sturmfels theorem

In more complicated models, do such connected graphs exist?

Definition
Let A ∈ Zm×n

≥0 . A Markov basis for A is a subset S of ker A :
Zn → Zm with the property that if u, v ∈ Zn

≥0 satisfy Au = Av,
then there exists a sequence u0 = u, u1, . . . , uk = v in Zn

≥0 such that
ui − ui+1 ∈ ±S for all i.

In our 2 × 2-table example, m = n = 4 and A looks like this:

(1, 1) (1, 2) (2, 1) (2, 2)
row 1
row 2
column 1
column 2
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3The existence of finite Markov bases

Observation
If S is a Markov basis for A, then for every b ∈ AZn

≥0 the fibre
(A−1b) ∩ Zn

≥0 is connected via moves of the form v 7→ v + u with
u ∈ ±S . If S is finite and (ker A) ∩ Z≥0 = {0}n, then this fibre is
finite for every b, and we have a finite graph as required by M-H.

Theorem (Diaconis-Sturmfels)
For any A ∈ Zm×n

≥0 there exists a finite Markov basis.

Proof
Consider the Z-algebra homomorphism ϕ : Z[y1, . . . , yn] →
Z[x1, . . . , xm] that sends y j to xAe j :=

∏m
i=1 xai j

i .

Note that ϕyu = xAu for all u ∈ Zn
≥0.
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Suppose that f =
∑

u cuyu ∈ kerϕ. Then 0 =
∑

u cuxAu, and hence
for each fixed b ∈ AZn

≥0 we have
∑

u∈(A−1b)∩Zn
≥0

cu = 0. This implies
that f lies in the Z-span of all binomials xu − xv where u, v ∈ Zn

≥0
satisfy Au = Av. Conversely, these binomials lie in kerϕ.

So, by Hilbert’s basis theorem, kerϕ generated by finitely many
binomials xui − xvi , i = 1, . . . , k where ui, vi ∈ Z

n
≥0 satisfy Aui = Avi

and moreover supp (ui) ∩ supp (vi) = ∅ for all i.

Set S := {ui − vi | i = 1, . . . , k}. We claim that this is a Markov
basis. Indeed, suppose that Au = Av where u, v ∈ Z≥0. Then
yu − yv ∈ kerϕ and hence yu − yv =

∑k
i=1 fi(yui − yvi ) for suitable

polynomials fi.

Rewrite this as yu − yv =
∑l

j=1 ±yw j (yui j − yvi j ).
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Then there is a p such that either wp + uip or wp + vip equals u and
has sign +1 on the left. Wlog consider the first case.
Then u′ := u − uip + vip ∈ u − S ∩ Zn

≥0 is another element in the
fibre through u, and yu′ − yv =

∑
j,p ±yw j (yui j − yvi j ).

Continuing in this fashion we obtain a path from u to v by means
of steps from ±S , while keeping all entries nonnegative. �

Exercise
Show that, conversely, if S is a Markov basis of A, then kerϕ is
generated by all binomials of the form yu+ − yu− where u+ is the
componentwise maximum of u and 0 and u− is the componentwise
maximum of −u and 0 (so that u = u+ − u−).
Consequence
The ideal of {rank-one matrices} is generated by 2 × 2-minors.



6Example: no three-way interaction

This is a model for three random variables X1, X2, X3 taking
values in [r1], [r2], [r3], respectively.

pi jk = Prob(X1 = i, X2 = j, X3 = k) equals a jkbikci j (normalised
such that the probabilities add up to 1)

To use the MH-algorithms for rejecting/accepting that an r1 ×

r2 × r3-table of observations comes from this distribution, one
needs to sample tables M with prescribed marginals labelled
( j, k), (i, k), (i, j) (in total, r2r3 + r1r3 + r1r2 marginals). For in-
stance, m+ jk.

Take r3 = 2 and r1 = r2 = 5.

1−1
1−1

1−1
1−1

−1 1

1−1
1−1

1−1
1−1
−11

This pair represents a possible element of the Markov basis. As
r3 = 2 and r1, r2 = n→ ∞, the maximal degree necessarily grows.



7Hierarchical models

Setting
d random variables taking values in [r j], j = 1, . . . , d

F a collection of subsets of [d]; for each A ∈ F and α ∈
∏

j∈A[r j]
have a parameter cA,α

For α ∈
∏

j∈[d][r j] have Prob(α) =
∏

A∈F cA,α|A (forget normalisa-
tion).

Example
Independence: F = {{1}, . . . , {d}}.
No 3-way interaction: F = {{2, 3}, {1, 3}, {1, 2}}

Theorem (Independent set theorem, Hillar-Sullivant)
Fix F and a subset T ⊆ [d]. If |T ∩ A| ≤ 1 for all A ∈ F , then the
Markov degree of the model is bounded as we fix r j with j ∈ [d]\T
and we let the r j with j ∈ T arbitrary elements of Z≥0.



8Some combinatorics

Definition
A partial order ≤ on S is called a well-partial order if for all
s1, s2, . . . ∈ S there exist i < j with si ≤ s j.

Exercise
If (S ,≤) is wpo then each sequence s1, s2, . . . has an infinite
ascending subsequence si1 ≤ si2 ≤ · · · where i1 < i2 < . . .

Lemma
If S ,T are wpo, then so is S × T ordered by (s, t) ≤ (s′, t′) if and
only if s ≤ s′ and t ≤ t′.

Corollary (Dickson’s Lemma)
Zn
≥0 with α ≤ β iff β − α ∈ Zn

≥0 is wpo.



9Further wpos

Higman’s Lemma
If (S ,≤) is wpo, then so is S ∗ :=

⋃
n S n with the partial order

(s1, . . . , sm) ≤ (t1, . . . , tn) if and only if ∃π : [m] → [n] strictly
increasing such that si ≤ tπ(i) for each i ∈ [m].

Proof
If not, then there is a counterexample s1, s2, . . . where the length of
si is minimal among all counterexamples starting with s1, . . . , si−1.

None of the si is the empty string (); so write si = (ai, ti).

There exists a subsequence i1 < i2 < . . . such that ai1 ≤ ai2 ≤ . . .
in the wpo S .

Check: then s1, . . . , si1−1, ti1 , ti2 , . . . is a smaller counterexample. �
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