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2Iarrobino-Kanev’s algorithm

Input: an f ∈ S dV sufficiently small. Output: fail or a decompo-
sition of f as a linear combination of pure powers.

• Compute Q := ker Ce
f ⊆ S eV∗ with e = d d

2 e.

• Compute the joint zero set Z ⊆ PV of the elements of Q,
regarded as degree-e polynomials on V .
• If Z is a finite set of reduced points [v1], . . . , [vk], then try to solve
the linear system f =

∑k
i=1 civd

i for c1, . . . , ck ∈ K. If successful,
return the decomposition, otherwise return fail.
• Otherwise, return fail.

Theorem (special case): If d is odd and k ≤
(

n − 1 + d − e
d − e

)
and

f is a general element of kX, then the decomposition of f into k
pure powers is unique, and the above algorithm finds it.



3Proof of Iarrobino-Kanev’s theorem

•Write f = vd
1 + · · · + vd

k with (v1, . . . , vk) ∈ Vk general.

• Then for g ∈ S eV∗, Ce
f g = d(d − 1) · · · (d − e + 1)

∑
i g(vi)vd−e

i .

• By the bound on k and generality of the vi, the vd−e
i are linearly

independent in S d−eV .
• Hence C f g = 0 if and only if g(vi) = 0 for all i; in other words,
Q is the degree-e piece of the vanishing ideal of [v1], . . . , [vk].

Lemma: Let S = {[v1], . . . , [vk]} be general in Pn−1, and s such

that
(

n − 1 + s
s

)
≥ k. Then the vanishing ideal of S is generated

in degree ≤ s + 1, and each piece of degree ≥ s + 1 has the same
vanishing set S .

• Now apply the following lemma to s = d − e = e − 1 (using that
d is odd). �
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Proof of Lemma
• First for S ⊆ Kn−1:
• π : K[x1, . . . , xn−1]→ K[S ] � K × K × · · · × K.

k

• M = {monomials of total degree ≤ s}, so |M| =
(

n − 1 + s
s

)
≥ k

• S general π(M) spans K[S ], so for every monomial u of
degree s + 1 there is a gu ∈ 〈M〉 such that u − gu ∈ ker π.
• So ker π, vanishing ideal of S , generated in degree at most s + 1.

• Projectively (may assume that S is disjoint from hyperplane
where xn = 0): suppose that f ∈ K[x1, . . . , xn] is homogeneous
and vanishes on S ⊆ Kn−1 ⊆ Pn−1

•Write f = xa
ng where g still vanishes on S and xn 6 |g; r := deg g.

• Set f ′ := g(x1, . . . , xn−1, 1) ∈ K[x1, . . . , xn−1], also of degree r.
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• By above, can write f ′ =
∑

i ai fi where ai, fi ∈ K[x1, . . . , xn−1],
fi ∈ ker π of degree ri ≤ s + 1, and deg(ai) + deg( fi) ≤ deg f ′ =: r.

• Then g = xr
n f ′( x1

xn
, . . . , xn−1

xn
) =∑

i(xr−ri
n ai( x1

xn
, . . . , xn−1

xn
))(xri

n fi( x1
xn
, . . . , xn−1

xn
))

hom polynomial hom polynomial vanishing on S
of degree ri ≤ s + 1.

�
There are many more results in symmetric tensor decomposition,
due to Mourrain, Brachat, Tsigaridas, Ottaviani, Oeding, Comon,
Lim, . . .
Open problem (Comon)
Let t ∈ V⊗d be symmetric. Is its rank as an ordinary tensor equal
to the symmetric rank of its image in S d as discussed above?



6Orthogonal tensor decomposition

Singular value decomposition
Every symmetric matrix A ∈ Rn×n can be written as
A =

∑k
i=1 ±vivT

i where v1, . . . , vk pairwise orthogonal in Rn.

Consider d ≥ 3 and V an n-dimensional real vector space with a
positive-definite inner product. Can every tensor in S dV be written
as

∑k
i=1 ±vd

i where v1, . . . , vk ∈ V pairwise orthogonal?

In general not: dimension of set of elements on the right is(
n + 1

2

)
, on the left it is

(
n − 1 + d

d

)
. This is the same for d = 2,

but typically not for d > 2.

Theorem (Boralevi-D-Horobeţ-Robeva)
The locus of orthogonally decomposable tensors in S dV is a real-
algebraic variety defined by quadratic polynomials.



7Odeco tensors

There are also variants for ordinary tensors (where quadratic equa-
tions still suffice) and alternating tensors (where cubic equations
are needed), and over C (where cubic and in the alternating case
also quartic equations are needed).

Proof for d = 3

• A tensor f ∈ S 3V has the catalecticant map C2
f : S 2V∗ → V .

• the inner product (.|.) yields an identification V → V∗, v 7→ (.|v).
• so f defines a bilinear multiplication µ f : V × V → V .
Concretely, if f = v3, then the multiplication is
u · w := (u|v)(w|v)v, and this is extended linearly to general
f ∈ S 3V . Note commutativity, and also (uw|x) = (ux|w). (*)

• now suppose that f =
∑

i v3
i , where vi are pairwise orthogonal.
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• Then compute
(u ·w) · v = (

∑
i(u|vi)(w|vi)vi) · v =

∑
i
∑

j(u|vi)(w|vi)(vi|v j)(v|v j)v j =∑
i(u|vi)(w|vi)(v|vi)||vi||

2vi = u · (w · v). = 0 unless i = j

• Conversely, assume that the multiplication associated to f is
associative.

• By (∗) the orthogonal complement of any ideal in the algebra V
is itself an ideal. So can decompose V as orthogonal direct sum of
simple ideals Vi. Accordingly, f ∈

⊕
S 3Vi, so suffices to prove

that dim Vi = 1 for all i. W.l.o.g. V is already simple.

• suppose multiplication is not 0, let x ∈ V be such that Lx :
y 7→ xy is nonzero. Show ker Lx is an ideal in V: if xy = 0 then
x(yz) = (xy)z = 0. So Lx is invertible by simplicity.
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• Now define a new multiplication ∗ on V by u ∗ v := L−1
x (uv).

This is commutative, and also associative (check!), and has x as
unit element.

• Summarising, V is a commutative, associative, R-algebra with 1,
which moreover is simple. Only possibilities: V � R or V � C.
But the latter has no compatible inner product (.|.). So dim V = 1.

• So f is odeco iff the multiplication associated to f is
associative. This is a list of quadratic equations: must have
µ f (µ f (u, v),w) = µ f (u, µ f (v,w)) for all u, v,w ∈ V . �

Open problem
Do these quadratic equations generate the ideal of the set of
odeco tensors?
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