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Input: an f € SV sufficiently small. Output: fail or a decompo-
sition of f as a linear combination of pure powers.

e Compute Q := kerC? CS°V* withe = [‘5’].
e Compute the joint zero set Z C PV of the elements of Q,

regarded as degree-e polynomials on V.

e If Z 1s a finite set of reduced points [v{], ..., [vi], then try to solve
the linear system f = Zle civf for cq,...,c, € K. If successful,
return the decomposition, otherwise return fail.

e Otherwise, return fail.

(n—1+d-e
\  d-e

f is a general element of kX, then the decomposition of f into k
pure powers 1s unique, and the above algorithm finds it.

Theorem (special case): If d 1s odd and k < and
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o Write f = v/ +--- + v/ with (v,...,v) € V¥ general.
e Then for g € S¢V*, C g dd—-1)---(d—e+ 1)), g(v,-)vlfl‘e.

e By the bound on k and generality of the v;, the vl‘.l‘e are linearly
independent in S¢¢V.

e Hence Crg = 0 1f and only it g(v;) = O for all 7; in other words,
0 1s the degree-e piece of the vanishing 1deal of [v(],..., [v].

e Now apply the following lemma to s = d — e = e — 1 (using that

d 1s odd). O
Lemma: LetS = {[v{],...,[vc]} be general in P""!, and s such
that (n - i i S) > k. Then the vanishing i1deal of S 1s generated

in degree < s + 1, and each piece of degree > s + 1 has the same
vanishing set S.



Proof of Lemma
e First for S € K" !: k
orm: K[xi,....,x,-1] > K[S]2'KXKX---XK!

e M = {monomials of total degree < s}, so |[M| = (n - S) >k

)
e S general w» m(M) spans K[S ], so for every monomial u of

degree s + 1 there1s a g, € (M) such thatu — g, € kern.

e So ker i, vanishing i1deal of S, generated in degree at most s + 1.

e Projectively (may assume that § 1s disjoint from hyperplane
where x,, = 0): suppose that f € K[xi,...,x,] 1s homogeneous
and vanishes on § € K"~ ! c p*~!

e Write f = x; g where g still vanishes on § and x,, fg; r := degg.

e Set /' = g(x1,...,x,-1,1) € K[xq,...,x,_1], also of degree r.



e By above, can write f* = »; a;f; where a;, f; € K[x, ..., x,-1],
fi € kermr of degree r; < s+ 1, and deg(a;) + deg(f;) < deg [’ =

e Then g = x, f'(3L, ..., =) =
Lol x”l))(x S )

hom polynomial hom polynomial Vanishing on S

of degree r; < s + 1.

[
There are many more results in symmetric tensor decomposition,

due to Mourrain, Brachat, Tsigaridas, Ottaviani, Oeding, Comon,
Lim, ...
Open problem (Comon)

Let t € V® be symmetric. Is its rank as an ordinary tensor equal
to the symmetric rank of its image in S¢ as discussed above?
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Singular value decomposition

Every symmetric matrix A € R™” can be written as

A =YK +vT where vy,. .., v pairwise orthogonal in R”.
i=1 I

Consider d > 3 and V an n-dimensional real vector space with a
positive-definite inner product. Can every tensor in SV be written

as Zle ivf where vi, ..., v, € V pairwise orthogonal?
In general not: dimension of set of elements on the right 1s
[n; 1), on the left it 1s (n _cli+ d). This 1s the same for d = 2,

but typically not for d > 2.

Theorem (Boralevi-D-Horobe{-Robeva)
The locus of orthogonally decomposable tensors in SV is a real-
algebraic variety defined by quadratic polynomials.



Odeco tensors ;

There are also variants for ordinary tensors (where quadratic equa-
tions still suffice) and alternating tensors (where cubic equations
are needed), and over C (where cubic and in the alternating case
also quartic equations are needed).

Proof for d = 3

e A tensor f € SV has the catalecticant map C]% : SV S V.

e the inner product (.|.) yields an identification V — V*, v = (|v).

e 50 f defines a bilinear multiplication us : VXV — V.
Concretely, if f = v*, then the multiplication is

u-w = (ulv)(w|v)v, and this is extended linearly to general

f € §3V. Note commutativity, and also (uw|x) = (ux|w). (**)

e now suppose that f = ) v?, where v; are pairwise orthogonal.



e Then compute
(-w)-v = uv)wvivi) - v =25 2 ;v wv)ilv p(vlv)vj =
2 U)WVl vi = u - (w - v). — 0 unless i = j

e Conversely, assume that the multiplication associated to f is
associative.

e By (x) the orthogonal complement of any 1deal in the algebra V
1s 1tself an 1deal. So can decompose V as orthogonal direct sum of
simple ideals V;. Accordingly, f € €D S°V;, so suffices to prove
that dim V; = 1 for all i. W.l.o.g. V 1s already simple.

e suppose multiplication 1s not O, let x € V be such that L, :
y — xy 1s nonzero. Show ker L, 1s an ideal in V: if xy = O then
x(vz) = (xy)z = 0. So L, is invertible by simplicity.



e Now define a new multiplication * on V by u * v := L-!(uv).
This 1s commutative, and also associative (check!), and has x as
unit element.

e Summarising, V 1s a commutative, associative, R-algebra with 1,
which moreover i1s simple. Only possibilities: V = Ror V = C.
But the latter has no compatible inner product (.|.). SodimV = 1.

e So f 1s odeco 1iff the multiplication associated to f 1s
associative. This 1s a list of quadratic equations: must have

wr(pr(u,v),w) = ur(u, ur(v,w)) torall u,v,w e V. O

Open problem
Do these quadratic equations generate the ideal of the set of
odeco tensors?
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