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2Equations for higher rank

Theorem (Qi, 2014) 3X is the zero set of degree-4 equations.
(4 × 4-minors of flattenings do not suffice, see 3 × 3 × 3-tensors)

Theorem (D-Kuttler)
For every infinite K and every k the set kX ⊆ V1 ⊗ · · · ⊗ Vd is
defined by polynomials of degree at most some N(k), which does
not depend on d or the dimensions of the Vi.

Known values (in char zero??)
k 1 2 3 4 k

N(k)
0
1 2 3 4 ≥ 9 ≥ k + 1

Open problems
• (easy?) Is the minimal N(k) increasing with k?
• (hard?) Is tensor rank multiplicative: rk(t1 ⊗ t2) = rk(t1) · rk(t2)?



3Remarks on symmetry

G :=
∏

i GL(Vi) acts on V1 ⊗ · · · ⊗ Vd by
(g1, . . . , gd)v1 ⊗ · · · ⊗ vd = (g1v1) ⊗ · · · ⊗ (gdvd)

Set ni := dim Vi. Then dim G =
∑

i n2
i , while dim

⊗
i Vi =

∏
i ni.

So for dimension reasons, G must have infinitely many orbits on
tensors if d ≥ 3 and the ni moderately large.

Set X = {pure tensors}, of dimension 1 − d +
∑

i ni.

It turns out that G has finitely many orbits on 3X (Buczynski-
Landsberg), and this is used by Qi. But (I think) there are already
infinitely many orbits on 4X.

My theorem with Kuttler shows that finitely many equations suf-
fice up to the action of G, plus permuting factors, plus flattenings.



4Symmetric powers and tensors

We work over algebraically closed K of characteristic zero.
Definition (d-th symmetric power)
V a finite-dimensional vector space, then S dV is the quotient of
V⊗d by the subspace spanned by all v1 ⊗ · · · ⊗ vd − vπ(1) ⊗ · · · ⊗ vπ(d)
for v1, . . . , vd ∈ V and π ∈ S d.
Can write v1 · · · vd for image of v1 ⊗ · · · ⊗ vd (order doesn’t mat-
ter); S dV is canonically isomorphic to the space of homogeneous
polynomials of degree d on V∗, via v1 · · · vd 7→ (x 7→

∏
i x(vi)).

Remark Dual notion: the subspace of V⊗d consisting of all ten-
sors stable under S d, i.e., symmetric tensors. The map V⊗d → S d

restricts to an isomorphism on this subspace (but here we use char-
acteristic zero; for symmetrising you need to divide by d!)

Lemma Given any basis v1, . . . , vn of V , the set
{vα := vα1

1 · · · v
αn
n | di ∈ Z≥0,

∑n
i=1 αi = n} is a basis of S dV .



5Catalecticant matrices

For f = v1 · · · vd ∈ S dV and e ≤ d we have a linear
map Ce

f : S eV∗ → S d−eV determined by C f (x1 · · · xe) =∑
ϕ:[e]→[d] injective(

∏e
i=1 xi(vπ(i))) ·

∏
j<imπ v j. Extends to general f .

If f = vd, then imCe
f = 〈vd−e〉, so Ce

f has rank ≤ 1 for each e.

Conversely, consider U = imCd−1
f ⊆ V . Choose a basis v1, . . . , vk

of U and extend with vk+1, · · · , vn of V . Write f =
∑
α cαvα. Sup-

pose that cα , 0 and let i be such that αi > 0. Applying C f to
xα−ei where x = (x1, . . . , xn) is the dual basis yields (some prod of
binomials times) cαvi, so vi ∈ U and i ≤ k. Conclusion: f ∈ S dU.
In particular, if dim U ≤ 1 then f = vd for some v ∈ V .

Conclusion
X := { f | ∃v ∈ V : f = vd} ⊆ S dV is a Zariski-closed cone defined
by the vanishing of the 2 × 2-minors of Ce−1

f . �



6Symmetric rank

Set X := {vd | v ∈ V} ⊆ S dV =: T .

Exercise
Show that X spans T .

So we can speak of the X-rank/border rank of an element of S dV .
This is also called the symmetric rank of a symmetric tensor.
In this case, most secant varieties are non-defective:

Theorem (Alexander-Hirschowitz) kX has dimension

min{kn,
(

n − 1 + d
d

)
} except in the following cases:

• d = 2, 2 ≤ k ≤ n − 1

• d = 4, (n, k) ∈ {(3, 5), (4, 9), (5, 14)}
• d = 3, n = 5, k = 7



7Decomposition of symmetric tensors

When dim kX = kn, a general f ∈ kX has a finite number of de-
compositions as vd

1 + · · · + vd
k .

When in addition k(n+1) < dim T , there is typically just 1 decom-
position up to permuting the terms (the two exceptions are rank 9
in S 6K3 and rank 8 in S 4K4, where # decompositions is 2).
If k(n + 1) = dim T this uniqueness sometimes holds, but is ex-
pected usually not to hold.

How to find such a decomposition, say when we know it is unique?
The following method, due to Iarrobino-Kanev, works for suffi-
ciently small k. There are improvements due to Oeding-Ottaviani
and others.



8Iarrobino-Kanev’s algorithm

Input: an f ∈ S dV sufficiently small. Output: fail or a decompo-
sition of f as a linear combination of pure powers.

• Compute Q := ker Ce
f ⊆ S eV∗ with e = d d

2 e.

• Compute the joint zero set Z ⊆ PV of the elements of Q,
regarded as degree-e polynomials on V .
• If Z is a finite set of reduced points [v1], . . . , [vk], then try to solve
the linear system f =

∑k
i=1 civd

i for c1, . . . , ck ∈ K. If successful,
return the decomposition, otherwise return fail.
• Otherwise, return fail.

Theorem (special case): If d is odd and k ≤
(

n − 1 + d − e
d − e

)
and

f is a general element of kX, then the decomposition of f into k
pure powers is unique, and the above algorithm finds it.
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