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2Recall: semi-algebraic sets

Definition
Take K = R. A semi-algebraic set in the R-vector space T is
a finite union of sets of the form {t | f1(t) = . . . = fm(t) =

0, h1(t), . . . , hn(t) > 0} where the fi and the h j are polynomials.

Theorem (Tarski-Seidenberg)
The image of a semi-algebraic set under a polynomial map is again
semi-algebraic.

In particular, if X ⊆ T Zariski-closed cone, then kX is semi-
algebraic!

Lemma
If S ⊆ T is a semi-algebraic set, then, in the Euclidean topology,
we have S

0
⊆ S 0



3Generic rank versus typical ranks

Now start with T over R, and X ⊆ T Zariski-closed cone.

Definition
r ∈ Z≥0 is a typical X-rank if the locus of rank−r elements in T
contains an open ball in the Euclidean topology.

Example
For T = (R2)⊗3 and X = {pure tensors} have seen that 2, 3 are
typical ranks.

Theorem (Bernardi-Blekhermann- Ottaviani, 2015)
The typical X-ranks form an interval {r0, r0 + 1, . . . , r1} where r0
is the generic X-rank.



4Typical ranks, continued

Proof
• The generic rank r0 is typical: for x1, . . . , xr0 ∈ X (smooth and)
sufficiently general the derivative of the addition map is onto T , so
r0X contains an open ball around x1 + . . . + xr0 .
• If r is a typical rank, then rX \(r−1)X contains a Euclidean-open
ball, and hence its Zariski closure is T , so r ≥ r0.
•Now suppose that r+1 is not a typical rank. Then, with Euclidean
topological operations, ((r + 1)X)0 ⊆ rX and hence ((r + 1)X)0 ⊆

rX
0
, and since rX is semi-algebraic this is contained in (rX)0 =: Y .

• Now we argue that Y is stable under adding elements of X to it.
Indeed, for each x ∈ X we have x+(rX)0 ⊆ ((r+1)X)0 (because the
first set is open) and this is contained in Y . But then also x+Y ⊆ Y .
• Hence Y = T and no integer > r is a typical rank. �



5Equations for bounded rank

Take K algebraically closed, characteristic zero, and X ⊆ T closed
cone spanning T .
Lemma
If the ideal of X has no nonzero poly of degree < d0, then the ideal
of kX has no nonzero poly of degree < d0 + (k − 1).

Proof
By induction on k. For the induction step, let f ∈ K[T ] be nonzero,
of degree d > 0, and vanish on (k + 1)X. Let v ∈ X be such that the
directional derivative g of f is not identically zero on T (use that
X spans T ). Then g is a nonzero poly of degree d − 1.
Now expand f (y + tv) = f (y) + tg(y) + · · ·. The left-hand side
vanishes identically for (y, t) ∈ kX × K, hence g vanishes on kX. �



6Rank 2

T = V1 ⊗ · · · ⊗Vd and X = { pure tensors }, then X is the zero set of
the 2 × 2-subdeterminants of flattenings. So 2X has no equations
of degree < 3. But in fact, 3 suffices:

Theorem (Landsberg-Manivel, 04)
t ∈ T is in 2X if and only if all [I,Jt has rank ≤ 2 for all (I, J).

Proof of⇐ for nonzero t
• Replace Vi by the image of [i,[d]−it : (

⊗
j,i V j)∗ → Vi, and re-

move 1-dimensional ones w.l.o.g. each Vi has dimension 2.
• For d = 3 have already seen the result. More precisely, if t has
vanishing Cayley hyperdet, then check that
t ∈ V1 ⊗ v2 ⊗ v3 + v1 ⊗ V2 ⊗ v3 + v1 ⊗ v2 ⊗ V3
for some vi ∈ Vi. (It lies on the tangential variety to X.)
• Indeed, they prove this last expression for elements of 2X \ 2X
for general d.



7Rank 2, continued

• By d=3 case two cases:
Case I can write t = u ⊗ v ⊗ s + u′ ⊗ v′ ⊗ s′ with each pair u, u′ ∈
V1, v, v′ ∈ V2 lin ind, and s, s′ ∈

⊗
i>2 Vi nonzero

• assume s not pure; then [I,J s = A⊗ B + A′ ⊗ B′ for some I ∪ J =

{3, . . . , d} and lin ind pairs A, A′, B, B′.
• must have s′ ∈ 〈A, A′〉 ⊗ 〈B, B′〉. Then
t = u ⊗ v ⊗ A ⊗ B + u ⊗ v ⊗ A′ ⊗ B′ + u′ ⊗ v′ ⊗ s′

and then v ⊗ A, v ⊗ A′, v′⊗ something ∈ im[(1J),(2I)t, contradiction,
so s, s′ pure, so t ∈ 2X.

Case 2 can write t = u′ ⊗ v ⊗ s + u ⊗ v′ ⊗ s + u ⊗ v ⊗ s′.
In this case, prove that s is pure: s = v3 ⊗ · · · ⊗ vd and that s′ ∈∑

i>2 v1 ⊗ · · · ⊗Vi ⊗ · · · ⊗ vp, so t lies on the tangential variety of X.
�
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