Applied algebraic geometry: tensor decomposition

Jan Draisma, Universität Bern

Definition

Take $K = \mathbb{R}$. A semi-algebraic set in the \mathbb{R} -vector space T is a finite union of sets of the form $\{t \mid f_1(t) = \ldots = f_m(t) = 0, h_1(t), \ldots, h_n(t) > 0\}$ where the f_i and the h_j are polynomials.

Theorem (Tarski-Seidenberg)

The image of a semi-algebraic set under a polynomial map is again semi-algebraic.

In particular, if $X \subseteq T$ Zariski-closed cone, then kX is semialgebraic!

Lemma

If $S \subseteq T$ is a semi-algebraic set, then, in the *Euclidean* topology, we have $\overline{S}^0 \subseteq \overline{S}^0$

Now start with T over \mathbb{R} , and $X \subseteq T$ Zariski-closed cone.

Definition

 $r \in \mathbb{Z}_{\geq 0}$ is a *typical X*-rank if the locus of rank-r elements in T contains an open ball in the Euclidean topology.

Example

For $T = (\mathbb{R}^2)^{\otimes 3}$ and $X = \{\text{pure tensors}\}\$ have seen that 2, 3 are typical ranks.

Theorem (Bernardi-Blekhermann- Ottaviani, 2015)

The typical X-ranks form an interval $\{r_0, r_0 + 1, \dots, r_1\}$ where r_0 is the generic X-rank.

Proof

- The generic rank r_0 is typical: for $x_1, \ldots, x_{r_0} \in X$ (smooth and) sufficiently general the derivative of the addition map is onto T, so r_0X contains an open ball around $x_1 + \ldots + x_{r_0}$.
- If r is a typical rank, then $rX \setminus (r-1)X$ contains a Euclidean-open ball, and hence its Zariski closure is T, so $r \ge r_0$.
- Now suppose that r+1 is *not* a typical rank. Then, with Euclidean topological operations, $((r+1)X)^0 \subseteq \overline{rX}$ and hence $((r+1)X)^0 \subseteq \overline{rX}^0$, and since rX is semi-algebraic this is contained in $\overline{(rX)^0} =: Y$.
- Now we argue that Y is stable under adding elements of X to it. Indeed, for each $x \in X$ we have $x+(rX)^0 \subseteq ((r+1)X)^0$ (because the first set is open) and this is contained in Y. But then also $x+Y \subseteq Y$.
- Hence Y = T and no integer > r is a typical rank.

Take K algebraically closed, characteristic zero, and $X \subseteq T$ closed cone spanning T.

Lemma

If the ideal of X has no nonzero poly of degree $< d_0$, then the ideal of \overline{kX} has no nonzero poly of degree $< d_0 + (k-1)$.

Proof

By induction on k. For the induction step, let $f \in K[T]$ be nonzero, of degree d > 0, and vanish on (k + 1)X. Let $v \in X$ be such that the directional derivative g of f is not identically zero on T (use that X spans T). Then g is a nonzero poly of degree d - 1.

Now expand $f(y + tv) = f(y) + tg(y) + \cdots$. The left-hand side vanishes identically for $(y, t) \in \overline{kX} \times K$, hence g vanishes on \overline{kX} . \square

 $T = V_1 \otimes \cdots \otimes V_d$ and $X = \{$ pure tensors $\}$, then X is the zero set of the 2×2 -subdeterminants of flattenings. So $\overline{2X}$ has no equations of degree < 3. But in fact, 3 suffices:

Theorem (Landsberg-Manivel, 04)

 $t \in T$ is in 2X if and only if all $b_{I,J}t$ has rank ≤ 2 for all (I,J).

Proof of \Leftarrow for nonzero t

- Replace V_i by the image of $b_{i,[d]-i}t:(\bigotimes_{j\neq i}V_j)^*\to V_i$, and remove 1-dimensional ones \leadsto w.l.o.g. each V_i has dimension 2.
- For d = 3 have already seen the result. More precisely, if t has vanishing Cayley hyperdet, then check that

$$t \in V_1 \otimes v_2 \otimes v_3 + v_1 \otimes V_2 \otimes v_3 + v_1 \otimes v_2 \otimes V_3$$

for some $v_i \in V_i$. (It lies on the *tangential variety* to X.)

• Indeed, they prove this last expression for elements of $\overline{2X} \setminus 2X$ for general d.

- By d=3 case → two cases:
- **Case I** can write $t = u \otimes v \otimes s + u' \otimes v' \otimes s'$ with each pair $u, u' \in V_1, v, v' \in V_2$ lin ind, and $s, s' \in \bigotimes_{i>2} V_i$ nonzero
- assume s not pure; then $b_{I,J}s = A \otimes B + A' \otimes B'$ for some $I \cup J = \{3, \ldots, d\}$ and lin ind pairs A, A', B, B'.
- must have $s' \in \langle A, A' \rangle \otimes \langle B, B' \rangle$. Then $t = u \otimes v \otimes A \otimes B + u \otimes v \otimes A' \otimes B' + u' \otimes v' \otimes s'$ and then $v \otimes A, v \otimes A', v' \otimes$ something $\in \text{imb}_{(1J),(2I)}t$, contradiction, so s, s' pure, so $t \in 2X$.

Case 2 can write $t = u' \otimes v \otimes s + u \otimes v' \otimes s + u \otimes v \otimes s'$. In this case, prove that s is pure: $s = v_3 \otimes \cdots \otimes v_d$ and that $s' \in \sum_{i>2} v_1 \otimes \cdots \otimes v_i \otimes \cdots \otimes v_p$, so t lies on the tangential variety of X.