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Definition
Take K = R. A semi-algebraic set in the R-vector space T 1s
a finite union of sets of the form {r | fi1(¥) = ... = f,(t) =

0, h1(2), ..., h,(¢t) > 0} where the f; and the /; are polynomials.

Theorem (Tarski-Seidenberg)
The 1mage of a semi-algebraic set under a polynomial map is again
semi-algebraic.

In particular, if X C T Zariski-closed cone, then kX 1s semi-
algebraic!

Lemma
If § C T 1s a semi-algebraic set, then, in the Euclidean topology,

we have §O C ﬁ
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Now start with 7" over R, and X C T Zariski-closed cone.

Definition
r € Zso 1s a typical X-rank 1if the locus of rank—r elements in T
contains an open ball in the Euclidean topology.

Example
For T = (R*)® and X = {pure tensors} have seen that 2,3 are
typical ranks.

Theorem (Bernardi-Blekhermann- Ottaviani, 2015)
The typical X-ranks form an interval {rg,r9 + 1, ..., 7|} where rg
1s the generic X-rank.



Typical ranks, continued 4

Proof

e The generic rank ry 1s typical: for xq,...,x, € X (smooth and)
sufficiently general the derivative of the addition map 1s onto 7', so
roX contains an open ball around x; + ... + x,,.

e If r1s a typical rank, then X \ (r—1)X contains a Euclidean-open
ball, and hence its Zariski closure 1s 7', so r > ry.

e Now suppose that r+1 is not a typical rank. Then, with Euclidean
topological operations, ((r + 1)X)" C rX and hence ((r + 1)X)° C

ﬁo, and since rX is semi-algebraic this is contained in (rX)" =: Y.
e Now we argue that Y 1s stable under adding elements of X to it.
Indeed, for each x € X we have x+(rX)? C ((r+ 1)X)" (because the
first set 1s open) and this 1s contained in Y. Butthen also x+Y C Y.
e Hence Y = T and no integer > r 1s a typical rank. O
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Take K algebraically closed, characteristic zero, and X C T closed
cone spanning 7.

Lemma
If the 1deal of X has no nonzero poly of degree < d, then the ideal
of kX has no nonzero poly of degree < dy + (k — 1).

Proof

By induction on k. For the induction step, let f € K[T'] be nonzero,
of degree d > 0, and vanish on (k + 1)X. Let v € X be such that the
directional derivative g of f 1s not identically zero on T (use that
X spans T'). Then g 1s a nonzero poly of degree d — 1.

Now expand f(y + tv) = f(y) + tg(y) + ---. The left-hand side
vanishes identically for (y, ?) € kX x K, hence g vanishes on kX. O
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T=V® --®V;and X = { pure tensors }, then X 1s the zero set of
the 2 X 2-subdeterminants of flattenings. So 2X has no equations
of degree < 3. But 1n fact, 3 suffices:

Theorem (Landsberg-Manivel, 04)
t € T is in 2X if and only if all b; ;¢ has rank < 2 for all (Z, J).

Proof of < for nonzero ¢

e Replace V; by the image of b; 4_;f : ((X)j ,; V)" = V;, and re-
move 1-dimensional ones ~w» w.l.0.g. each V; has dimension 2.

e For d = 3 have already seen the result. More precisely, if ¢ has
vanishing Cayley hyperdet, then check that
reVi@mev+vi®@Vo®vs+vi®@vm V3

for some v; € V;. (It lies on the tangential variety to X.)

e Indeed, they prove this last expression for elements of 2X \ 2X
for general d.
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e By d=3 case ~» two cases:

Caselcanwritet = u®v® s+ u ® Vv ® s’ with each pair u,u’ €
Vi,v,v/ € V, linind, and s, s’ € (X)._, V; nonzero

e assume s not pure; thenb; ;s =A®B+A’® B’ forsome [U J =
{3,...,d}and lin ind pairs A,A’, B, B’.

e must have s" € (A, A’) ® (B, B’). Then

= uURVRARB+uUQRVRA' QB +u' @V ® 5’

and then v® A,v ® A’,V'® something € imb j 25)f, contradiction,
SO §, s’ pure, sot € 2X.

Case2canwrite f = u' Qv s+ u®@vV s+u®veys'.

In this case, prove that s 1s pure: s = v3; ® --- ® v; and that s" €
22 V1®---®V,®---®v,, so 1 lies on the tangential variety of X.
O
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