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2New topic: Optimisation

Typical goal: maximise f (x) subject to x ∈ X

Here X ⊆ Rn is a compact set given by polynomial weak inequali-
ties (and equalities) and f is a polynomial function.

We’ll discuss an approach due to Lasserre.

Write R = C[x1, . . . , xn] and write Rd for poly of degree ≤ d.

Simple idea: think of points in X as linear functions on R. This
linear function evx : R→ R, h 7→ h(x) satisfies:
1. ev(1) = 1
2. evx(h) ≥ 0 for all h ∈ R that are nonnegative everywhere on X.

(1)



3Infinite-dimensional LP relaxation

We find that the maximum we’re trying to find has the upper bound
the following maximum:
Relaxation
sup `( f ) where ` : R→ R is linear and satisfies `(1) = 1, `(h) ≥ 0
for all h nonnegative on X.
Proposition
In fact, this sup is attained at evx for some x ∈ X.
Proof: First, note that ` is automatically continuous in the ∞-
norm: if |h − h′|∞ < ε then ε − l(h − h′) = l(ε − (h − h′)) ≥ 0, etc.
By Stone-Weierstrass, since R separates points of X, R is dense
in C0(X,R). Hence ` extends uniquely to a continuous linear func-
tional ` : C0(X,R)→ Rwith the same properties. (If h is continous
and nonnegative on X, approximate k := h + ε1 by a polynomial p
with |p− k|∞ ≤ ε and so that |`(p− k)| ≤ ε . Then `(p) ≥ 0 implies
`(h) ≥ −2ε.)

(2)



4Finite-dimensional, infinite LP relaxation

By the Riesz representation theorem, there is a probability measure
µ on X such that `(h) =

∫
X h(x)dµ(x) for all h ∈ C0(X,R). Then,

`( f ) =
∫

X f (x)dµ(x) ≤ maxx∈X f (x). �

For each d ≥ deg( f ) we get the following further:

Relaxation
max `( f ) such that ` : Rd → R linear, `(1) = 1 and `(h) ≥ 0 for all
h ∈ Rd nonnegative on X.

This is a finite-dimensional linear program, but still with infinitely
many, hard-to-handle constraints. Note that the maximum is at-
tained, since for every monomial m ∈ Rd the functions c1 − m
and c1 + m are nonnegative on X for c � 0, so the domain over
which ` runs is compact. Using Tychonov, find that the max in
(3)d converges to the sup/max in (2).

(3)d



5How to certify positivity?

There are polynomials that are clearly positive everywhere,
namely sums of squares: p2

1 + . . . + p2
k where the pi are polyno-

mials. Let S ⊆ R be the set of these. It is closed under addition.

Now assume X = {x ∈ Rn | g1(x), . . . , gr(x) ≥ 0}. Set g0 := 1.
Define the quadratic module generated by the gi as M :=

∑m
i=0 S gr.

These polynomials are clearly nonnegative on X.

So it is natural to replace the condition “`(h) ≥ 0 for h ∈ Rd non-
negative on X” in (3)d by “`(h) ≥ 0 for h ∈ Md”.

The condition `(h) ≥ 0 for each h ∈ Md is equivalent to `(p2gi) ≥ 0
for each p ∈ Rb(d−deg(gi))/2c =: Pi,d and each i = 1, . . . , r.



6Reformulation as SDP

Let βi be the symmetric bilinear form on Pi,d defined by βi(p, q) :=
`(pgiq). Then the above is equivalent to βi being positive semidef-
inite.

This leads to the following optimisation problem:

Lasserre’s hierarchy
(For any d ≥ 2 deg f ): max β0( f , 1) where β0, . . . , βr are
symmetric bilinear forms on P0,d, . . . , Pr,d satisfying
1. β0(1, 1) = 1 and
2. βi(p, q) = β j(p′, q′) for all i, j, p, q such that pgiq = p′g jq′ and
3. βi is positive semidefinite.

(4)d

Conditions 2,3 imply that there is a linear ` : Rd → R with
βi(p, q) = `(pgiq) for all i and p, q ∈ Pi,d and with `(Md) ⊆ R≥0.



7Semidefinite relaxation

This is a semidefinite program: except for the positive semidefi-
niteness condition, the conditions on the βi are affine-linear, and
we’re optimising a linear function. The general form of a semidef-
inite program is as follows: max `(t) s.t. A0 + t1A1 + . . . + Amtm
is positive semidefinite. Here ` is linear and A0, . . . , Am are real
symmetric matrices. The above can be put in this form by param-
eterising the affine space given by the linear conditions on the βi.

Remark
One can enforce this assumption by adding the constraint
gr+1(x) := a − ||x||2 ≥ 0 for some sufficiently large a so that X
is contained in this set.

Archimedean assumption
Assume that there exists a u ∈ M such that {x ∈ Rn | u(x) ≥ 0} is
compact.



8Lasserre’s theorem

Theorem
Under the Archimedean assumption, the optimal value of (4)d

converges to the optimal value of (1) as d → ∞.

Given the discussion above, this follows directly from the Posi-
tivstellensätze on the next slide.



9Positivstellensätze

Theorem (Schmüdgen)
f ∈ R is strictly positive on the compact set X iff f ∈ a · 1 +∑
ε∈{0,1}r S gε1

1 · · · g
εr
r for some a > 0.

Theorem (Putinar)
Under the Archimedian assumption, every f ∈ R strictly positive
on X lies in M.
Examples (from Nie’s lecture notes)
• f = x1x2 + 1 is positive on X = {x ∈ R2 | g := 1− (x2

1 + x2
2) ≥ 0},

and indeed f = 1
2 (x1 + x2)2 + 1

2 g + 1
2 .

• but “nonnegative” does not suffice: f = 1 − x2 is nonnegative on
X = {x ∈ R | g(x) := (1 − x2)3 ≥ 0
Assume f = s1 + s2g for sums of squares s1, s2. Then −1 is a root
of s1, hence a root of all its square terms, hence of multiplicity at
least 2 on the rhs, but of mult. 1 on the lhs, contradiction.



10An example

Example
Maximise f = x + 8y subject to g := 1 − (x4 + y4) ≥ 0.

Classical approach: argue that maximum is taken on the boundary
where x4 + y4 ≤ 1. Necessary condition is that the derivative of f
along the tangent direction to the boundary vanishes. That tangent
direction at (x, y) equals (y3,−x3), so we want y3 − 8x3 = 0.

maximum attained here

Then get y = 2x (by reality)
and x = 17−1/4, so the
maximum of f equals
17 · 17−1/4 = 173/4 ' 8.372144.



11Example, continued

Take d = 4.
So Rd = 〈1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, . . . , y4〉.

So P0,4 = 〈1, x, y, x2, xy, y2〉 and P1,4 = 〈1〉.
So β0 has the matrix:

1 x y x2 xy y2

1
x
y
x2

xy
y2

1 a b c d e
a
b
c
d
e

c d h i j
d
h
i
j

e i j k
i
j
k

l m n
m
n

n o
o p

And β1 has the 1 × 1-matrix 1 − (l + p). The condition is that the
(6 + 1) × (6 + 1)-block matrix diag(β0, β1) is positive semidefinite.

Relaxation (4)d

max a + 8b subject to diag(β0, β1) PSD.
Optimum using Sage: 8.372144
In hindsight, not surprising:
PSD⇒ l ≥ c2 ≥ a4, and p ≥ e2 ≥ b4

so 0 ≤ 1 − (l + p) ≤ 1 − (a4 + b4) . . .

 we already have equality at d = 4!
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