Applied algebraic geometry: polynomial optimisation

Jan Draisma, Universität Bern

Typical goal: maximise f(x) subject to $x \in X$ (1)

Here $X \subseteq \mathbb{R}^n$ is a compact set given by polynomial weak inequalities (and equalities) and f is a polynomial function.

We'll discuss an approach due to Lasserre.

Write $R = \mathbb{C}[x_1, \dots, x_n]$ and write R_d for poly of degree $\leq d$.

Simple idea: think of points in *X* as linear functions on *R*. This linear function $ev_x : R \to \mathbb{R}, h \mapsto h(x)$ satisfies:

- 1. ev(1) = 1
- 2. $\operatorname{ev}_{x}(h) \geq 0$ for all $h \in R$ that are nonnegative everywhere on X.

We find that the maximum we're trying to find has the *upper bound* the following maximum:

Relaxation

 $\sup \ell(f)$ where $\ell: R \to \mathbb{R}$ is linear and satisfies $\ell(1) = 1$, $\ell(h) \ge 0$ for all h nonnegative on X.

Proposition

In fact, this sup is attained at ev_x for some $x \in X$.

Proof: First, note that ℓ is automatically continuous in the ∞ -norm: if $|h - h'|_{\infty} < \epsilon$ then $\epsilon - l(h - h') = l(\epsilon - (h - h')) \ge 0$, etc. By Stone-Weierstrass, since R separates points of X, R is dense in $C^0(X,R)$. Hence ℓ extends uniquely to a continuous linear functional $\ell: C^0(X,R) \to \mathbb{R}$ with the same properties. (If h is continuous and nonnegative on X, approximate $k := h + \epsilon 1$ by a polynomial p with $|p - k|_{\infty} \le \epsilon$ and so that $|\ell(p - k)| \le \epsilon$. Then $\ell(p) \ge 0$ implies $\ell(h) \ge -2\epsilon$.)

By the Riesz representation theorem, there is a probability measure μ on X such that $\ell(h) = \int_X h(x) d\mu(x)$ for all $h \in C^0(X, \mathbb{R})$. Then, $\ell(f) = \int_X f(x) d\mu(x) \le \max_{x \in X} f(x)$.

For each $d \ge \deg(f)$ we get the following further:

Relaxation

 $\max \ell(f)$ such that $\ell: R_d \to \mathbb{R}$ linear, $\ell(1) = 1$ and $\ell(h) \ge 0$ for all $h \in R_d$ nonnegative on X.

This is a finite-dimensional linear program, but still with infinitely many, hard-to-handle constraints. Note that the maximum is attained, since for every monomial $m \in R_d$ the functions c1 - m and c1 + m are nonnegative on X for $c \gg 0$, so the domain over which ℓ runs is compact. Using Tychonov, find that the max in $(3)_d$ converges to the sup/max in (2).

There are polynomials that are clearly positive everywhere, namely *sums of squares*: $p_1^2 + ... + p_k^2$ where the p_i are polynomials. Let $S \subseteq R$ be the set of these. It is closed under addition.

Now assume $X = \{x \in \mathbb{R}^n \mid g_1(x), \dots, g_r(x) \geq 0\}$. Set $g_0 := 1$. Define the *quadratic module* generated by the g_i as $M := \sum_{i=0}^m S g_r$. These polynomials are clearly nonnegative on X.

So it is natural to replace the condition " $\ell(h) \ge 0$ for $h \in R_d$ nonnegative on X" in $(3)_d$ by " $\ell(h) \ge 0$ for $h \in M_d$ ".

The condition $\ell(h) \ge 0$ for each $h \in M_d$ is equivalent to $\ell(p^2g_i) \ge 0$ for each $p \in R_{\lfloor (d-\deg(g_i))/2 \rfloor} =: P_{i,d}$ and each i = 1, ..., r.

Let β_i be the symmetric bilinear form on $P_{i,d}$ defined by $\beta_i(p,q) := \ell(pg_iq)$. Then the above is equivalent to β_i being *positive semidefinite*.

This leads to the following optimisation problem:

Lasserre's hierarchy

(For any $d \ge 2 \deg f$): $\max \beta_0(f, 1)$ where β_0, \dots, β_r are symmetric bilinear forms on $P_{0,d}, \dots, P_{r,d}$ satisfying

- 1. $\beta_0(1,1) = 1$ and (4)_d
- 2. $\beta_i(p,q) = \beta_j(p',q')$ for all i, j, p, q such that $pg_iq = p'g_jq'$ and
- 3. β_i is positive semidefinite.

Conditions 2,3 imply that there is a linear $\ell: R_d \to \mathbb{R}$ with $\beta_i(p,q) = \ell(pg_iq)$ for all i and $p,q \in P_{i,d}$ and with $\ell(M_d) \subseteq \mathbb{R}_{\geq 0}$.

This is a *semidefinite program*: except for the positive semidefiniteness condition, the conditions on the β_i are affine-linear, and we're optimising a linear function. The general form of a semidefinite program is as follows: $\max \ell(t)$ s.t. $A_0 + t_1 A_1 + \ldots + A_m t_m$ is positive semidefinite. Here ℓ is linear and A_0, \ldots, A_m are real symmetric matrices. The above can be put in this form by parameterising the affine space given by the linear conditions on the β_i .

Archimedean assumption

Assume that there exists a $u \in M$ such that $\{x \in \mathbb{R}^n \mid u(x) \ge 0\}$ is compact.

Remark

One can enforce this assumption by adding the constraint $g_{r+1}(x) := a - ||x||^2 \ge 0$ for some sufficiently large a so that X is contained in this set.

Theorem

Under the Archimedean assumption, the optimal value of $(4)_d$ converges to the optimal value of (1) as $d \to \infty$.

Given the discussion above, this follows directly from the *Positivstellensätze* on the next slide.

Theorem (Schmüdgen)

 $f \in R$ is *strictly positive* on the compact set X iff $f \in a \cdot 1 + \sum_{\epsilon \in \{0,1\}^r} S g_1^{\epsilon_1} \cdots g_r^{\epsilon_r}$ for some a > 0.

Theorem (Putinar)

Under the Archimedian assumption, every $f \in R$ strictly positive on X lies in M.

Examples (from Nie's lecture notes)

- $f = x_1x_2 + 1$ is positive on $X = \{x \in \mathbb{R}^2 \mid g := 1 (x_1^2 + x_2^2) \ge 0\}$, and indeed $f = \frac{1}{2}(x_1 + x_2)^2 + \frac{1}{2}g + \frac{1}{2}$.
- but "nonnegative" does not suffice: $f = 1 x^2$ is nonnegative on $X = \{x \in \mathbb{R} \mid g(x) := (1 x^2)^3 \ge 0$

Assume $f = s_1 + s_2 g$ for sums of squares s_1, s_2 . Then -1 is a root of s_1 , hence a root of all its square terms, hence of multiplicity at least 2 on the rhs, but of mult. 1 on the lhs, contradiction.

Example

Maximise f = x + 8y subject to $g := 1 - (x^4 + y^4) \ge 0$.

Classical approach: argue that maximum is taken on the boundary where $x^4 + y^4 \le 1$. Necessary condition is that the derivative of f along the tangent direction to the boundary vanishes. That tangent direction at (x, y) equals $(y^3, -x^3)$, so we want $y^3 - 8x^3 = 0$.

maximum attained here

Then get y = 2x (by reality) and $x = 17^{-1/4}$, so the maximum of f equals $17 \cdot 17^{-1/4} = 17^{3/4} \approx 8.372144$. Take d = 4.

So
$$R_d = \langle 1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3, x^4, \dots, y^4 \rangle$$
.

So
$$P_{0,4} = \langle 1, x, y, x^2, xy, y^2 \rangle$$
 and $P_{1,4} = \langle 1 \rangle$.

So β_0 has the matrix:

	1	X	У	x^2	хy	y^2
1	1	\overline{a}	b	c h	d	e
$\boldsymbol{\mathcal{X}}$	а	C	d	h	i	\boldsymbol{j}
y	b	d	e	$_{}$ i	j	k
x^2	C	h	i	l	m	n
xy	d	i	\dot{j}	m	$\lfloor n \rfloor$	0
y^2	e	\dot{J}	k	m n	0	<u>p</u>

Relaxation $(4)_d$

 $\max a + 8b$ subject to $\operatorname{diag}(\beta_0, \beta_1)$ PSD.

Optimum using Sage: 8.372144

In hindsight, not surprising:

PSD
$$\Rightarrow l \ge c^2 \ge a^4$$
, and $p \ge e^2 \ge b^4$
so $0 \le 1 - (l + p) \le 1 - (a^4 + b^4) \dots$

 \rightsquigarrow we already have equality at d=4!

And β_1 has the 1×1 -matrix 1 - (l + p). The condition is that the $(6 + 1) \times (6 + 1)$ -block matrix diag (β_0, β_1) is positive semidefinite.