Applied algebraic geometry: algebraic statistics and optimisation

Jan Draisma, Universität Bern

Example (*k*-factor model)

$$\Sigma_X = \Lambda^T D \lambda + D'$$
 where D, D' diagonal

Forget about positive-definiteness (think of the Λ, D, D' as variables).

$$M_{k,n} := \{ \Sigma = \Lambda^T \Lambda + D \mid \Lambda \in \mathbb{C}^{k \times n}, D \text{ diagonal} \}.$$

Question (Drton-Sturmfels-Sullivant)

Equations for $M_{k,n}$?

Obvious equations: $(k + 1) \times (k + 1)$ -subdeterminants outside the diagonal, as well as $\sigma_{ij} - \sigma_{ji}$.

For k = 1 these generate the ideal.

For k = 2 there is an additional type of equation:

 $\sum_{\pi \in S_5} \operatorname{sg} n(\pi) \pi \cdot \sigma_{12} \sigma_{23} \sigma_{34} \sigma_{45} \sigma_{51}$, the *pentad*. Pentads and off-diagonal 3 × 3-determinants generate the ideal of $M_{2,n}$.

For general k, there is the following existence result:

Theorem

For each fixed k, there exists an n_0 such that for $n \ge n_0$ the variety $M_{k,n}$ is the zero set of the equations coming from M_{k,n_0} by simultaneously permuting rows and columns.

Recall

A top space X is *Noetherian* if every descending chain $X \supseteq X_1 \supseteq \cdots$ of closed subsets stabilises, i.e., $X_n = X_{n+1}$ for $n \gg 0$.

Definition

Suppose a group G acts by homeomorphisms on a space X. Then call X G-Noetherian if every chain $X \supseteq X_1 \supseteq \cdots$ of G-stable closed subsets stabilises.

Fundamental example

The space $\mathbb{C}^{k\times\mathbb{N}}$ with the Zariski topology is $Sym(\mathbb{N})$ -Noetherian. (Follows from our earlier results on sequences of ideals.)

Constructions

G-stable subspaces, and *G*-equivariant images of *G*-Noetherian topological spaces are *G*-Noetherian. Also, if $Y \subseteq X$ is *H*-Noetherian for some $H \subseteq G$, then $\bigcup_{g \in G} gY$ is *G*-Noetherian.

Proof sketch

Pass to an infinite-dimensional limit:

 $M_{k,\mathbb{N}} := \{ \Sigma = \Lambda^T \Lambda + D \mid \Lambda \in \mathbb{C}^{k \times \mathbb{N}}, D \text{ diagonal} \} \subseteq \mathbb{C}^{\mathbb{N} \times \mathbb{N}}. \text{ This is stable under Sym}(\mathbb{N}).$

Let Q_k be the variety of $\mathbb{N} \times \mathbb{N}$ -matrices all of whose off-diagonal $(k+1) \times (k+1)$ -minors vanish. So $M_{k,\mathbb{N}} \subseteq Q_k$, and also Q_k is $\mathrm{Sym}(\mathbb{N})$ -stable.

By induction on k we prove that Q_k is $Sym(\mathbb{N})$ -Noetherian.

For k = 0, $Q_{0,n}$ is the space of diagonal matrices, and the result follows from Noetherianity of $\mathbb{C}^{1 \times \mathbb{N}}$.

Suppose the claim is true for k-1. Write $Q_{k,n}=Q_{k-1,n}\cup Z$ where Z is the open subset with at least one off-diagonal $k\times k$ -subdeterminant $\neq 0$. Then $Z=\bigcup_{g\in \operatorname{Sym}(\mathbb{N})} gZ'$ where Z' is the open subset where the $\{1,\ldots,k\}\times\{k+1,\ldots,2k\}$ -subdet is nonzero. Up to permutations, elements of Z' are of the following form:

k

k	A	В	C
	D	E	F
	G	H	K

where $det(B) \neq 0$, and each off-diagonal element of K is determined by B, C, H.

The space with coordinates A, B, C, D, E, F, G and the diagonal elements of H is Noetherian under Sym(N) where $N := \mathbb{N} \setminus \{1, \ldots, k\}$. (It is $\mathbb{C}^{(4k+1)\times N}$ times a finite-dimensional space.)

It follows that Z' is Sym(N)-Noetherian, and Z is $Sym(\mathbb{N})$ -Noetherian, and so is Q_k .

(The corresponding *ideal-theoretic* statement is widely open! And so is the value of n_0 , which could be as small as 2k + 2.)

Typical goal: maximise f(x) subject to $x \in X$ (1)

Here $X \subseteq \mathbb{R}^n$ is a compact set given by polynomial weak inequalities (and equalities) and f is a polynomial function.

We'll discuss an approach due to Lasserre.

Write $R = \mathbb{C}[x_1, \dots, x_n]$ and write R_d for poly of degree $\leq d$.

Simple idea: think of points in *X* as linear functions on *R*. This linear function $ev_x : R \to \mathbb{R}, h \mapsto h(x)$ satisfies:

- 1. ev(1) = 1
- 2. $\operatorname{ev}_{X}(h) \geq 0$ for all $h \in R$ that are nonnegative everywhere on X.

We find that the maximum we're trying to find has the *upper bound* the following maximum:

Relaxation

 $\sup \ell(f)$ where $\ell: R \to \mathbb{R}$ is linear and satisfies $\ell(1) = 1$, $\ell(h) \ge 0$ for all h nonnegative on X.

Proposition

In fact, this sup is attained at ev_x for some $x \in X$.

Proof: First, note that ℓ is automatically continuous in the ∞ -norm: if $|h - h'|_{\infty} < \epsilon$ then $\epsilon - l(h - h') = l(\epsilon - (h - h')) \ge 0$, etc. By Stone-Weierstrass, since R separates points of X, R is dense in $C^0(X,R)$. Hence ℓ extends uniquely to a continuous linear functional $\ell: C^0(X,R) \to \mathbb{R}$ with the same properties. (If h is continuous and nonnegative on X, approximate $k := h + \epsilon 1$ by a polynomial p with $|p - k|_{\infty} \le \epsilon$ and so that $|\ell(p - k)| \le \epsilon$. Then $\ell(p) \ge 0$ implies $\ell(h) \ge -2\epsilon$.)

By the Riesz representation theorem, there is a probability measure μ on X such that $\ell(h) = \int_X h(x) d\mu(x)$ for all $h \in C^0(X, \mathbb{R})$. Then, $\ell(f) = \int_X f(x) d\mu(x) \le \max_{x \in X} f(x)$.

For each $d \ge \deg(f)$ we get the following further:

Relaxation

 $\max \ell(f)$ such that $\ell: R_d \to \mathbb{R}$ linear, $\ell(1) = 1$ and $\ell(h) \ge 0$ for all $h \in R_d$ nonnegative on X.

This is a finite-dimensional linear program, but still with infinitely many, hard-to-handle constraints. Note that the maximum is attained, since for every monomial m the functions c1-m and c1+m is nonnegative for $c \gg 0$, so the domain over which ℓ runs is compact. Using Tychonov, find that the max in $(3)_d$ converges to the sup/max in (2).

There are polynomials that are clearly positive everywhere, namely *sums of squares*: $p_1^2 + ... + p_k^2$ where the p_i are polynomials. Let $S \subseteq R$ be the set of these.

Now assume $X = \{x \in \mathbb{R}^n \mid g_1(x), \dots, g_r(x) \geq 0\}$. Set $g_0 := 1$. Define the *quadratic module* generated by the g_i as $M := \sum_{i=0}^m S g_i$. These polynomials are clearly nonnegative on X.

So it is natural to replace the condition " $\ell(h) \ge 0$ for $h \in R_d$ nonnegative on X" by " $\ell(h) \ge 0$ for $h \in M_d$ ".

These conditions are equivalent to the symmetric bilinear form β_i on $R_{\lfloor (d-\deg g_i)/2 \rfloor} =: V_{i,d}$ defined by $\beta_i(p,q) := \ell(pg_iq)$ being positive semidefinite for each i.

Relaxation (for each $d \ge \deg(f)$) max $\ell(f)$ where $\ell: R_d \to \mathbb{R}$ linear, such that $\ell(1) = 1$ and $\ell(h) \ge 0$ for all $h \in M_d$. (4)_d

Archimedean assumption

Assume that there exists a $u \in M$ such that $\{x \in \mathbb{R}^n \mid u(x) \ge 0\}$ is compact.

Theorem (Schmüdgen, Putinar, Jacobi)

Under this assumption, each polynomial p strictly positive on X lies in M.

It follows that the optimal value of $(4)_d$ for $d \to \infty$ still converges to the actual optimal value of (1).

But the number of linear conditions on ℓ is still infinite.

The condition $\ell(h) \ge 0$ for each $h \in M_d$ is equivalent to $\ell(p^2g_i) \ge 0$ for each $p \in R_{\lfloor (d-\deg(g_i))/2 \rfloor} =: P_{i,d}$ and each i = 1, ..., r.

Let β_i be the symmetric bilinear form on $P_{i,d}$ defined by $\beta_i(p,q) := \ell(pg_iq)$. Then the above is equivalent to β_i being *positive semidefinite*.

This leads to the following optimisation problem:

Lasserre's hierarchy

(For any $d \ge 2 \deg f$): $\max \beta_0(f, 1)$ where β_0, \dots, β_r are symmetric bilinear forms on $P_{0,d}, \dots, P_{r,d}$ satisfying

- 1. $\beta_0(1,1) = 1$ and
- 2. $\beta_i(p,q) = \beta_j(p',q')$ for all i, j, p, q such that $pg_iq = p'g_jq'$ and 3. β_i is positive semidefinite.

Conditions 2,3 imply that there is a linear $\ell: R_d \to \mathbb{R}$ with $\beta_i(p,q) = \ell(pg_iq)$ for all i and $p,q \in P_{i,d}$ and with $\ell(M_d) \subseteq \mathbb{R}_{\geq 0}$.

This is a *semidefinite program*: except for the positive semidefiniteness condition, the conditions on the β_i are affine-linear, and we're optimising a linear function. The general form of a semidefinite program is as follows: $\max \ell(t)$ s.t. $A_0 + t_1 A_1 + \ldots + A_m t_m$ is positive semidefinite. Here ℓ is linear and A_0, \ldots, A_m are real symmetric matrices. The above can be put in this form by parameterising the affine space given by the linear conditions on the β_i .

Under the Archimedean assumption, the optimal value of $(4)_d$ converges to the optimal value of (1) as $d \to \infty$.

Remark

One can enforce this assumption by adding the constraint $g_{r+1}(x) := a - ||x||^2 \ge 0$ for some sufficiently large a so that X is contained in this set.