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2Latent variables

Y1

X1 Xn

YkExample (k-factor model) · · ·

· · ·

ΣX = ΛT Dλ + D′ where D,D′ diagonal

λi j

Forget about positive-definiteness (think of the Λ,D,D′ as
variables).

Mk,n := {Σ = ΛT Λ + D | Λ ∈ Ck×n,D diagonal}.

Question (Drton-Sturmfels-Sullivant)
Equations for Mk,n?



3Equations for the k-factor model

Obvious equations: (k + 1) × (k + 1)-subdeterminants outside the
diagonal, as well as σi j − σ ji.

For k = 1 these generate the ideal.

For k = 2 there is an additional type of equation:∑
π∈S 5

sgn(π)π · σ12σ23σ34σ45σ51, the pentad. Pentads and off-
diagonal 3 × 3-determinants generate the ideal of M2,n.

For general k, there is the following existence result:
Theorem
For each fixed k, there exists an n0 such that for n ≥ n0 the va-
riety Mk,n is the zero set of the equations coming from Mk,n0 by
simultaneously permuting rows and columns.



4Noetherianity up to symmetry

Recall
A top space X is Noetherian if every descending chain X ⊇ X1 ⊇

· · · of closed subsets stabilises, i.e., Xn = Xn+1 for n � 0.
Definition
Suppose a group G acts by homeomorphisms on a space X. Then
call X G-Noetherian if every chain X ⊇ X1 ⊇ · · · of G-stable closed
subsets stabilises.
Fundamental example
The space Ck×N with the Zariski topology is Sym(N)-Noetherian.
(Follows from our earlier results on sequences of ideals.)
Constructions
G-stable subspaces, and G-equivariant images of G-Noetherian
topological spaces are G-Noetherian. Also, if Y ⊆ X is H-
Noetherian for some H ⊆ G, then

⋃
g∈G gY is G-Noetherian.



5Equations for the k-factor model

Proof sketch
Pass to an infinite-dimensional limit:
Mk,N := {Σ = ΛT Λ + D | Λ ∈ Ck×N,D diagonal} ⊆ CN×N. This is
stable under Sym(N).
Let Qk be the variety of N × N-matrices all of whose off-diagonal
(k + 1) × (k + 1)-minors vanish. So Mk,N ⊆ Qk, and also Qk is
Sym(N)-stable.
By induction on k we prove that Qk is Sym(N)-Noetherian.

For k = 0, Q0,n is the space of diagonal matrices, and the result
follows from Noetherianity of C1×N.



6Equations for the k-factor model

Suppose the claim is true for k − 1. Write Qk,n = Qk−1,n ∪ Z
where Z is the open subset with at least one off-diagonal k × k-
subdeterminant , 0. Then Z =

⋃
g∈Sym(N) gZ′ where Z′ is the open

subset where the {1, . . . , k} × {k + 1, . . . , 2k}-subdet is nonzero.
Up to permutations, elements of Z′ are of the following form:

B Ck

D

A

E F

G H

k

where det(B) , 0, and each off-diagonal element of K is
determined by B,C,H.

K



7Equations for the k-factor model

The space with coordinates A, B,C,D, E, F,G and the diagonal
elements of H is Noetherian under Sym(N) where N := N \
{1, . . . , k}. (It is C(4k+1)×N times a finite-dimensional space.)

It follows that Z′ is Sym(N)-Noetherian, and Z is Sym(N)-
Noetherian, and so is Qk. �

(The corresponding ideal-theoretic statement is widely open!
And so is the value of n0, which could be as small as 2k + 2.)



8New topic: Optimisation

Typical goal: maximise f (x) subject to x ∈ X

Here X ⊆ Rn is a compact set given by polynomial weak inequali-
ties (and equalities) and f is a polynomial function.

We’ll discuss an approach due to Lasserre.

Write R = C[x1, . . . , xn] and write Rd for poly of degree ≤ d.

Simple idea: think of points in X as linear functions on R. This
linear function evx : R→ R, h 7→ h(x) satisfies:
1. ev(1) = 1
2. evx(h) ≥ 0 for all h ∈ R that are nonnegative everywhere on X.

(1)



9Infinite-dimensional LP relaxation

We find that the maximum we’re trying to find has the upper bound
the following maximum:
Relaxation
sup `( f ) where ` : R→ R is linear and satisfies `(1) = 1, `(h) ≥ 0
for all h nonnegative on X.
Proposition
In fact, this sup is attained at evx for some x ∈ X.
Proof: First, note that ` is automatically continuous in the ∞-
norm: if |h − h′|∞ < ε then ε − l(h − h′) = l(ε − (h − h′)) ≥ 0, etc.
By Stone-Weierstrass, since R separates points of X, R is dense
in C0(X,R). Hence ` extends uniquely to a continuous linear func-
tional ` : C0(X,R)→ Rwith the same properties. (If h is continous
and nonnegative on X, approximate k := h + ε1 by a polynomial p
with |p− k|∞ ≤ ε and so that |`(p− k)| ≤ ε . Then `(p) ≥ 0 implies
`(h) ≥ −2ε.)

(2)



10Infinite LP relaxation

By the Riesz representation theorem, there is a probability measure
µ on X such that `(h) =

∫
X h(x)dµ(x) for all h ∈ C0(X,R). Then,

`( f ) =
∫

X f (x)dµ(x) ≤ maxx∈X f (x). �

For each d ≥ deg( f ) we get the following further:

Relaxation
max `( f ) such that ` : Rd → R linear, `(1) = 1 and `(h) ≥ 0 for all
h ∈ Rd nonnegative on X.

This is a finite-dimensional linear program, but still with infinitely
many, hard-to-handle constraints. Note that the maximum is at-
tained, since for every monomial m the functions c1−m and c1+m
is nonnegative for c � 0, so the domain over which ` runs is com-
pact. Using Tychonov, find that the max in (3)d converges to the
sup/max in (2).

(3)d



11How to certify positivity?

There are polynomials that are clearly positive everywhere,
namely sums of squares: p2

1 + . . . + p2
k where the pi are polyno-

mials. Let S ⊆ R be the set of these.

Now assume X = {x ∈ Rn | g1(x), . . . , gr(x) ≥ 0}. Set g0 := 1.
Define the quadratic module generated by the gi as M :=

∑m
i=0 S gr.

These polynomials are clearly nonnegative on X.

So it is natural to replace the condition “`(h) ≥ 0 for h ∈ Rd non-
negative on X” by “`(h) ≥ 0 for h ∈ Md”.

These conditions are equivalent to the symmetric bilinear form βi

on Rb(d−deg gi)/2c =: Vi,d defined by βi(p, q) := `(pgiq) being positive
semidefinite for each i.



12Infinite LP relaxation

Relaxation (for each d ≥ deg( f )) max `( f ) where ` : Rd → R
linear, such that `(1) = 1 and `(h) ≥ 0 for all h ∈ Md. (4)d

Archimedean assumption
Assume that there exists a u ∈ M such that {x ∈ Rn | u(x) ≥ 0} is
compact.

Theorem (Schmüdgen, Putinar, Jacobi)
Under this assumption, each polynomial p strictly positive on X
lies in M.

It follows that the optimal value of (4)d for d → ∞ still converges
to the actual optimal value of (1).

But the number of linear conditions on ` is still infinite.



13Reformulation as SDP

The condition `(h) ≥ 0 for each h ∈ Md is equivalent to `(p2gi) ≥ 0
for each p ∈ Rb(d−deg(gi))/2c =: Pi,d and each i = 1, . . . , r.

Let βi be the symmetric bilinear form on Pi,d defined by βi(p, q) :=
`(pgiq). Then the above is equivalent to βi being positive semidef-
inite.

This leads to the following optimisation problem:
Lasserre’s hierarchy
(For any d ≥ 2 deg f ): max β0( f , 1) where β0, . . . , βr are
symmetric bilinear forms on P0,d, . . . , Pr,d satisfying
1. β0(1, 1) = 1 and
2. βi(p, q) = β j(p′, q′) for all i, j, p, q such that pgiq = p′g jq′ and
3. βi is positive semidefinite.

(4)d

Conditions 2,3 imply that there is a linear ` : Rd → R with
βi(p, q) = `(pgiq) for all i and p, q ∈ Pi,d and with `(Md) ⊆ R≥0.



14Semidefinite relaxation

This is a semidefinite program: except for the positive semidefi-
niteness condition, the conditions on the βi are affine-linear, and
we’re optimising a linear function. The general form of a semidef-
inite program is as follows: max `(t) s.t. A0 + t1A1 + . . . + Amtm
is positive semidefinite. Here ` is linear and A0, . . . , Am are real
symmetric matrices. The above can be put in this form by param-
eterising the affine space given by the linear conditions on the βi.

Under the Archimedean assumption, the optimal value of (4)d con-
verges to the optimal value of (1) as d → ∞.

Remark
One can enforce this assumption by adding the constraint
gr+1(x) := a − ||x||2 ≥ 0 for some sufficiently large a so that X
is contained in this set.
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