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2A theorem about product of matrix varieties

Theorem (Allman-Rhodes, Draisma-Kuttler)
Let X ⊆ Cm×k and Y ⊆ Ck×n be closed subvarieties, both GLk-
stable (via right- and left- multiplication, respectively). Then
X · Y = {z ∈ Cm×n | z ·Cn×k ⊆ X and Ck×m · z ⊆ Y and rkz ≤ k}, and
the corresponding statement holds at the level of ideals, as well.

This reduces the study of equations for phylogenetic models on
general trees to that of claw trees. For trivalent trees with all nodes
taking 4 values, the Friedman-Gross result gives equations for all
tree models.

Proof
Suppose f vanishes on X · Y . Write M = Cm×k and N = Ck×n and
P = Cm×n, and let µ : M × N → P denote multiplication. Set
µ∗ f =: h ∈ C[M × N]. Then h = h1 + h2 with h1 ∈ I(X × N) and
h2 ∈ I(M × Y). Note that h is GLk-invariant.



3Proof of ARDK

Now apply the Reynolds operator ρ : C[M × N]→ C[M × N]GLk

This yields h = h′1 + h′2 where h′1 ∈ I(X × N)GLk and h′2 ∈ I(M ×
Y)GLk (here we use that X,Y are GLk-stable, hence so are the ideals
I(X × N) and I(M × Y)).

Now µ∗ : C[P] → C[M × N]GLk is surjective (First Fundamental
Theorem in Invariant Theory), so h′i = µ∗( fi), i.e., fi(ab) = h′i(a, b)
for all matrices a, b.

Now f1(X·N) = {0} = f2(M·y), and on the other hand µ∗( f− f1− f2)
vanishes identically, so f − f1 − f2 lies in the ideal generated by
(k + 1) × (k + 1)-determinants. (SFT) �



4Jointly Gaussian random variables

Start with n independent, standard-normal distributed random vari-
ables Y1, . . . ,Yn. Their joint distribution is given by the density
function fY (y) :=

∏k
i=1 g(yi) where g(y) := 1

√
2π

e−y2/2 is the density
of a standard normal scalar random variable.

Now let A ∈ GLn(R). What is the density of the random variable
Z := AY? It is the unique continuous function fZ such that for all
measurable U ⊆ Rn we have

∫
z∈U fZ(z)dz =

∫
y∈A−1U fY (y)dy (lhs is

Prob(z ∈ U) and rhs is Prob(Y ∈ A−1U).

Rewrite this as fY (y) = 1
−(2π)n/2 eyT y/2.

Change of variables formula yields: fZ(z) = 1
| det(A)| fY (A−1z) =

1
| det(A)|(2π)n/2 e−zT A−T A−1z/2 = 1

√
(2π)n det Σ

e−zT Σ−1z/2 where Σ = AAT is
the positive definite covariance matrix of Z.



5Gaussian graphical models

Algebraic Gaussian models arise by putting algebraic conditions
on Σ. For a subset S ⊆ [n] write ZS . This vector is multivariate
Gaussian with covariant matrix ΣS , the S × S -submatrix of Σ.

Take a DAG G = ([n], E) as before. Now Zi ⊥⊥ Znd(i)\pa(i) | pa(i)
means the following (write N = nd(i) \ pa(i) and P = pa(i)):

fZ{i}∪N |ZP=zP (z{i}∪N) = fZi |ZP=zP (zi) fZN |ZP=zP (zN)

One can check that this holds if and only if the X admit the follow-
ing parameterisation: write X j =

∑
i∈pa( j) λi jXi + ε j where the ε j are

independent, Gaussian distributed, with variance ω j.

Then X = ΛT X + ε where λi j = 0 if i < pa( j), and hence X =

(I−Λ)−T ε, with covariance matrix Σ = (I−Λ)−T Ω(I−Λ)−1 where
Ω = diag(ω1, . . . , ωn)



6Treks

Theorem (Sullivant, Talaska)
Let A, B ⊆ [n] of equal cardinality k. Then det(ΣA,B) is identically
zero on the model if and only if there are no k tracks starting within
A and ending within B and without sided intersection: any two of
the treks are vertex disjoint in their up-parts as well as in their
down-parts.

A trek in G is a sequence i0 ← · · · ← im → im+1 → · · · im+l. Both
m and l may be zero.
The corresponding trek monomial is
λi1,i0 · · · λim,im−1ωimλim,im+1 · · · λim+l−1,im+l

Prop
σi j is the sum of all track monomials corresponding to treks from
i to j, each multiplied with (−1)m+l (where m + l is the length of
the trek).
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