Applied algebraic geometry: tensor decomposition

Jan Draisma, Universität Bern

Observation

K a field. Then $A \in K^{m \times n}$ has $\operatorname{rk} A \leq k \Leftrightarrow A$ can be written as $\sum_{i=1}^k u_i v_i^T$ with $u_i \in K^m, v_i \in K^n$.

 \Leftarrow each $u_i v_i^T$ has rank 1 and $\operatorname{rk}(B + C) \leq \operatorname{rk}(B) + \operatorname{rk}(C)$ ⇒ induction on k: if $A \neq 0$, take nonzero $u \in \operatorname{colspace}(A)$, w such that Aw = u, and v such that $\ker A \subseteq \ker v^T$ and $v^T w \neq 0$. Then $A' := A - \frac{uv^T}{v^T w}$ has $\ker A' \supseteq Kw + \ker A$ so $\operatorname{rk}A' < \operatorname{rk}A$.

Many variations

- matrices with structure (symmetric, skew)
- want the u_i pairwise \perp , and also the v_i (SVD over \mathbb{R} or \mathbb{C})
- approximations by low-rank matrices (SVD)

Central question: How does this all generalise to tensors?

Answer 1: a multidimensional array of numbers. $(a_{ijk})_{i \in [5], j \in [4], k \in [2]}$

Answer 2: an element of $T := V_1 \otimes \cdots \otimes V_d$ for V_1, \ldots, V_d f.d. vector spaces over K

Recall

Elements of T are formal linear combinations of symbols $v_1 \otimes \cdots \otimes v_d$ modulo the space spanned by elements of the form $v_1 \otimes \cdots \otimes (v_i + u_i) \otimes \cdots \otimes v_d - v_1 \otimes \cdots \otimes v_i \otimes \cdots \otimes v_d - v_1 \otimes \cdots \otimes u_i \otimes \cdots \otimes v_d$ and $v_1 \otimes \cdots \otimes (cv_i) \otimes \cdots \otimes v_d - c(v_1 \otimes \cdots \otimes v_d)$

- {linear $f: T \to W$ } \cong {multilin $f: V_1 \times \cdots \times V_d \to W$ }
- B_i basis of $V_i \Rightarrow B_1 \otimes \cdots \otimes B_d$ basis of T (relates answers 1,2)
- $V_1^* \otimes \cdots \otimes V_d^* \cong T^*, (x_1 \otimes \cdots \otimes x_d)(v_1 \otimes \cdots \otimes v_d) = \prod_i x_i(v_i)$

Given a partition $[d] = I \cup J$, have a natural map $b_{I,J} : T \to T_I \otimes T_J$ with $T_I := \bigotimes_{i \in I} V_i$, given by $v_1 \otimes \cdots \otimes v_p \mapsto (\bigotimes_{i \in I} v_i) \otimes (\bigotimes_{i \in J} v_j)$. Here we forget the tensor product structure on T_I , T_J . Similarly with more factors.

In general, $U^* \otimes V \cong \operatorname{Hom}_K(U, V)$, $x \otimes v \mapsto (u \mapsto x(u)v)$.

Take $t \in T$. For each $i \in [d]$, let $U_i := \text{image of } t$ as linear map $T_{[d]-i}^* \to V_i$. Then $t \in \bigotimes_i U_i$ and the U_i are minimal with this property. All dim $U_i = 1 \Leftrightarrow t = u_1 \otimes \cdots \otimes u_d$, some nonzero u_i .

Definition t is called pure if $t = u_1 \otimes \cdots \otimes u_d$ for some u_i .

Proposition

Pure tensors in T form a Zariski-closed subset X defined by quadratic polynomials.

Proof

For d=2 these are the rank ≤ 1 matrices, defined by 2×2 -subdeterminants. For d>1, t pure iff $b_{\lceil d\rceil-i,i}t$ pure for all i.

Remark $|K| = \infty \rightsquigarrow 2 \times 2$ -dets of flattenings generate ideal(X).

Definition

T any vector space, $X \subseteq V$ Zariski-closed cone spanning T. Then

- $\bullet kX := \{x_1 + \cdots + x_k \mid x_i \in X\};$
- $\operatorname{rk}_X t := \min\{k \mid v \in kX\} \text{ the } X\text{-}rank \text{ of } v;$
- kX is the k-th secant variety of X; and
- $\operatorname{brk}_X t := \min\{k \mid v \in kX\}$ the *X-border rank* of *v*.

For $X \subseteq T$ above, this is *tensor* (border) rank.

 $t \in K^2 \otimes K^2 \otimes K^2$, write $t = e_1 \otimes A + e_2 \otimes B$ with $A, B \times 2$ -matrices

- suppose $\operatorname{rkb}_{1,23}t = 2$, i.e., A, B linearly independent
- then $\operatorname{rk} t = 2$ iff $\exists C, D$ of rank 1 and u, v such that $t = u \otimes C + v \otimes D$
- iff $\langle A, B \rangle$ contains two linearly independent rank-1 matrices
- iff the discriminant $\Delta(t)$ of the quadratic polynomial $\det(xA + yB)$ is a nonzero square—this is *Cayley's hyperdeterminant*:

$$\Delta(t) = a_{2,2}^2 b_{1,1}^2 - 2a_{2,1} a_{2,2} b_{1,1} b_{1,2} + a_{2,1}^2 b_{1,2}^2 - 2a_{1,2} a_{2,2} b_{1,1} b_{2,1} - 2a_{1,2} a_{2,1} b_{1}, 2b_{2,1} + 4a_{1,1} a_{2,2} b_{1,2} b_{2,1} + a_{1,2}^2 b_{2,1}^2 + 4a_{1,2} a_{2,1} b_{1,1} b_{2,2} - 2a_{1,1} a_{2,2} b_{1,1} b_{2,2} - 2a_{1,1} a_{2,1} b_{1,2} b_{2,2} - 2a_{1,1} a_{1,2} b_{2,1} b_{2,2} + a_{1,1}^2 b_{2,2}^2$$

Picture for K alg closed: For $K = \mathbb{R}$ have $\Delta > 0 \rightsquigarrow \text{rank } 2$,

 $\Delta < 0 \rightsquigarrow \text{rank } 3.$

pure
$$\Delta = 0$$
, not pure \rightsquigarrow rank 3
 $\Delta \neq 0 \rightsquigarrow$ rank 2