APPLIED ALGEBRAIC GEOMETRY, SHEET 2

- (1) Let K be algebraically closed, and $X \subseteq K^{m \times n}$ the closed subvariety of matrices of rank at most k, which is assumed $\leq m, n$.
 - (a) Prove that *X* is irreducible.
 - (b) Prove that the matrices of rank equal to *k* form a dense, open subset *U* of *X*.

Let GL_n be the group of invertible $n \times n$ -matrices. It is also an n^2 -dimensional affine variety, and the multiplication and inverse are morphisms of affine varieties, i.e. it is an algebraic group. Let $G = GL_n \times GL_m$ act on X via $(g,h)A = gAh^{-1}$.

(c) Show that *U* equals the *G*-orbit of the matrix

$$J := \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}$$

in which I_k is the $k \times k$ -identity matrix.

- (d) Determine the stabiliser of *J* in *G*, and compute its dimension.
- (e) Derive from this the dimension of *X*.
- (2) Let K be algebraically closed of characteristic zero, $X \subseteq K^n$ a Zariski-closed cone, and for $k \in \mathbb{Z}_{\geq 0}$ set $d_k := \dim \overline{kX}$. Prove that $d_{k+1} d_k \leq d_k d_{k-1}$ for all $k \geq 1$, i.e., the sequence $(d_k)_k$ is concave. (Hint: use Terracini's lemma.)
- (3) Let K be algebraically closed of characteristic zero, $T = \{a_0x^d + a_1x^{d-1}y + \dots + a_dy^d \mid a_0, \dots, a_d \in K\}$ the space of *binary forms* of degree d, and $X = \{(ax + by)^d \mid a, b \in K\}$ the variety of d-th powers. We want to show that the maximal X-rank of an element of T equals d.
 - (a) Let $\sigma_i(a_1, \ldots, a_d) := \sum_{I \subseteq [d], |I| = d} \prod_{i \in I} a_i$ be the *i*-th *elementary symmetric function* in a_1, \ldots, a_d . Prove that the map $K^d \to K^d, a \mapsto (\sigma_1(a), \ldots, \sigma_d(a))$ is surjective. (Hint: polynomial factorisation.)
 - (b) Let $\pi_i(a_1, \dots, a_d) := a_1^i + \dots + a_d^i$ be the *i*-th *power sum*. Prove that the map $K^d \to K^d$, $a \mapsto (\pi_1(a), \dots, \pi_d(a))$ is also surjective. (Hint: you may use that the π_i are polynomials in the σ_i and vice versa—look up *Newton's identities*, e.g. on Wikipedia.)
 - (c) Conclude that over K every univariate polynomial of the form $dx^d + b_1x^{d-1} + \ldots + b_d$ is a sum of d polynomials of the form $(x + c)^d$, and that the maximal X-rank of an element of T is at most d.
 - (d) * Show that $x^{d-1}y$ does not have rank < d. (The * means I have to re-think about it myself)

1

Handed out on September 30, to be handed in on October 6.