

Definition. A *well-quasi-order* on a set A is a transitive relation \leq s.t. for all $a_1, a_2, ...$ there exist i < j with $a_i \leq a_j$.

(Non-)examples

- Any transitive relation on a finite set A is a wqo.
- The standard \leq on $\mathbb{N} = \{1, 2, ...\}$ is a wqo; | is not.
- The standard \leq on \mathbb{Z} is not a wqo: -1, -2, ...
- A is infinite \Rightarrow = is not a wqo: infinite antichains.

Lemma. If \leq is a wqo on A and $a_1, a_2, ... \in A$, then $\exists i_1 < i_2 < ...$ with $a_{i_1} \leq a_{i_2} \leq ...$

Dickson's Lemma. \leq_i a wqo on A_i for $i=1,2 \rightsquigarrow (a,b) \leq (c,d) :\Leftrightarrow (a \leq_1 c \text{ and } b \leq_2 d)$ is a wqo on $A_1 \times A_2$.

Higman's lemma

 $A^* = \bigcup_{d=0}^{\infty} A^d$ is the set of words on A

Lemma (Higman)

If \leq is a wqo on A, then \leq on A^* defined by $(a_1, ..., a_d) \leq (b_1, ..., b_e) :\Leftrightarrow \exists$ strictly increasing $\pi : [d] \rightarrow [e]$ with $\forall i : a_i \leq b_{\pi(i)}$ is a wqo.

Proof

- If not, take a *bad sequence*, i.e., $w_1, w_2, ... \in A^*$ with $\nexists i < j : w_i \leq w_j$; *minimal* in the following sense: w_k is shortest among all bad sequences starting with $w_1, ..., w_{k-1}$.
- Write $w_i = (a_i, u_i)$ and find $i_1 < i_2 < ...$ with $a_{i_1} \leq a_{i_2} \leq ...$
- Now $w_1, \ldots, w_{i_1-1}, u_{i_1}, u_{i_2}, \ldots$ is a bad sequence \rightsquigarrow contradiction.

Theorem (Kruskal)

Generalisation of Higman's lemma to rooted, A-labelled

trees.

Theorem (Maclagan)

The set of monomial ideals in $K[x_1, ..., x_n]$ is well-quasi-ordered by $I \leq J := I \supseteq J$.

Tensor restriction fheorem (Blatter-D-Rupniewski)

$$\mathbb{F}_q$$
 a finite field, $d \in \mathbb{Z}_{\geq 0} \ V_1, V_2, ...$ f.d. \mathbb{F}_q -spaces, $T_i \in V_i^{\otimes d}$. Then $\exists i < j, \varphi \in \operatorname{Hom}(V_j, V_i) : \varphi^{\otimes d} T_j = T_i$.

Corollary

Every property of order-d tensors over \mathbb{F}_q preserved under applying linear maps can be tested in polynomial time.

Multilinear analogue of:

Theorem (Robertson-Seymour)

The minor order on finite, undirected graphs is a wqo.

K a field (or Noetherian ring), fixed throughout

Hilbert's basis theorem

Every ideal I in $K[x_1, ..., x_n]$ is finitely generated.

Proof template:

- monomials in $x_1, ..., x_n$ are wqo wrt $x^{\alpha} | x^{\beta}$ (Dickson);
- hence with respect to any monomial order \leq the set $Im(I) = \{Im(f) \mid f \in I \setminus \{0\}\}$ has finitely many |-minimal elements: $Im(f_1), ..., Im(f_k)$.
- f_1, \ldots, f_k generate I (division with remainder).

Linear algebra over categories

Representations of a category

Definition. C a category \rightsquigarrow a C-module over K is a (covariant) functor $M: C \rightarrow \mathsf{Mod}_K$, i.e.:

- $\forall S : M(S)$ is an K-module;
- $\forall \pi \in \text{Hom}_{C}(S, T)$: $M(f) : M(S) \to M(T)$ is K-linear;
- and $M(1_S) = 1_{M(S)}$ and $M(\sigma \circ \pi) = M(\sigma) \circ M(\pi)$.

Remarks

- C-modules over K form an abelian category.
- Many natural notions, such as finitely generated.
- Each M(S) is a representation of $Aut_C(S)$.

Example

 $C = \mathbf{FI}$: Finite sets with Injections

$$M(S) = K \cdot {S \choose 2}$$
, generated by $1 \cdot \{1, 2\} \in M([2])$

Example

X a manifold \leadsto Conf_X : $\mathbf{FI}^{op} \to$ manifolds, defined by Conf_X(S) = {injective maps $S \to X$ }; the *pure configuration space* of X.

Theorem (Church-Ellenberg-Farb)

Fix $p \ge 0$. Under mild conditions on X, $H^p(Conf_X, \mathbb{Q})$ is a finitely generated **FI**-module over \mathbb{Q} .

Nice consequences, e.g. $\dim_{\mathbb{Q}}(H^p(\text{Conf}_X([n]),\mathbb{Q}))$ is polynomial in n for $n \gg 0$, and splits into a fixed number of S_n -representations (*representation stability*).

Theorem (Church-Ellenberg-Farb). Every sub-**FI**-module *V* of a finitely generated **FI**-module *M* is finitely generated.

Same proof template (Sam-Snowden)

- Work with **OI**: sets [d], $d \in \mathbb{Z}_{>0}$ with increasing maps.
- M is a quotient of $P = P_{d_1} \oplus \cdots \oplus P_{d_k}$, where $P_d(S) = K \cdot \text{Hom}_{OI}([d], S)$; suffices to prove for M = P.
- For basis elements $\pi \in \text{Hom}_{Ol}([d], S) \subseteq P_d(S)$ and $\sigma \in \text{Hom}_{Ol}([d], T)$, write $\pi \preceq \sigma$ if $\exists \varphi \in \text{Hom}_{Ol}(S, T) : \sigma = \varphi \circ \pi$.
- This is a wqo on the basis in each P_d (Higman's lemma for $A = \{0, 1\}$ with =), hence on the basis in P.
- Choose an **OI**-compatible linear order on the basis in each P(S). Then \exists finitely many $v_i \in V(S_i)$ s.t. $\forall S$, $\forall v \in V(S) \exists i : \text{Im}(v_i) \leq \text{Im}(v)$. These generate $V \subseteq P$.

Sam-Snowden call **OI** a *Gröbner category*, and **FI** a *quasi-Gröbner category*.

FS: Finite sets and Surjective maps

FS^{op}: the opposite category

Theorem (Sam-Snowden)

FS^{op} is quasi-Gröbner. Hence any sub-**FS**^{op}-module of a finitely generated **FS**^{op}-module is finitely generated.

Proof: (not so easy) exercise: find an ordered version of **FS**^{op} and a suitable wqo, etc.

FI-modules appear naturally throughout math.

FS^{op}-modules not so much, but ...

The Lannes-Schwartz Artinian conjecture

Let \mathbb{F}_q be a finite field, $\mathbf{Vec}_{\mathbb{F}_q}$ the category of finite-dimensional vector spaces over \mathbb{F}_q .

Corollary (Putman, Sam, Snowden)

Finitely generated $\mathbf{Vec}_{\mathbb{F}_q}$ -modules M over K are Noetherian.

Proof

ullet Have a functor $Q: \mathbf{FS}^\mathsf{op} o \mathbf{Vec}_{\mathbb{F}_q}, Q(S) = \mathbb{F}_q S$.

• Show that $M \circ Q$ is a finitely generated \mathbf{FS}^{op} -module: every $T \times$ bounded matrix over \mathbb{F}_q is of the form $Q(\pi) \cdot A$ for some bounded \times bounded matrix A.

Commutative algebra over categories

Definition. A C-algebra over K is a functor from C to (commutative, unital) K-algebras.

Natural notions of ideals and Noetherianity.

Coordinate rings of matrix spaces as FI-algebras

- $\bullet \ B(S) := K[x_{ij} \mid i, j \in S]$
- $\bullet \ A_{c}(S) := K[x_{ij} \mid i \in [c], j \in S]$

Examples

- The ideals $I_k \subseteq A$ and $J_k \subseteq B$ generated by all $k \times k$ -determinants is finitely generated in both B (by k+1 elements) and in A (by $\binom{c}{k}$ elements).
- B is not Noetherian.

Theorem (Daniel Cohen, 1987)

The **FI**-algebra $A_c: S \mapsto K[x_{ij} \mid i \in [c], j \in S]$ is Noetherian.

Many, many applications and follow-up work:

- the independent set theorem (Hillar-Sullivant)
- biv. Hilbert series (Nagel-Römer, Krone-Leykin-Snowden)
- co-dimension, projective dimension, regularity (Van Le-Nagel-Nguyen-Römer)
- moment varieties of mixtures of products (Alexandr-Kileel-Sturmfels, . . .)

Theorem (D-Eggermont-Farooq-Meier)

For any homomorphism $R \to A_c$ of finitely generated **FI**-algebras, the image closure of $\operatorname{Spec}(A_c) \to \operatorname{Spec}(R)$ is set-theoretically defined by finitely many equations.

Rank-one tensors as an FS-variety

Fix n.

For any finite set S, define $V(S) := (K^n)^{\otimes S}$, and for any surjective $\pi: T \to S$ define $V(\pi): V(T) \to V(S)$ by $\bigotimes_{j \in T} v_j \mapsto \bigotimes_{i \in S} \bigodot_{j \in \pi^{-1}(i)} v_j$, where $\odot =$.

The locus $X(S) \subseteq V(S)$ of rank-1 tensors is an **FS**-variety.

Theorem (D-Oosterhof)

Coordinate ring $S \mapsto K[X(S)]$ is a Noetherian FS^{op} -algebra. (Proof uses Maclagan's theorem.)

 \rightsquigarrow Ideals of *iterated toric fibre products* of undirected discrete graphical models stabilise as the number of factors tend to ∞ (builds on work by Rauh-Sullivant and Kahle-Rauh).

Theorem (Blatter-D-Rupniewski)

Let $P: \mathbf{Vec}_{\mathbb{F}_q} \to \mathbf{Vec}_{\mathbb{F}_q}$ be *any* functor of finite length. Then the $\mathbf{Vec}_{\mathbb{F}_q}^{\mathrm{op}}$ -algebra $V \mapsto \mathbb{F}_q^{P(V)} = SP(V)^*/\langle f^q - f \mid f \rangle$ is Noetherian.

Corollary

Given
$$p_i \in P(V_i)$$
, $i = 1, 2, ...$, there exist $i < j$ and $\varphi : V_j \to V_i$ with $P(\varphi)p_j = p_i$. (Notation: $p_i \leq p_j$)

Proof

Let I_i be the ideal of functions that vanish on all p with $p_j \not \preceq p$ for all j = 1, ..., i. Then $I_{j-1} = I_j$ for some j and hence $p_i \preceq p_i$ for some i < j.

Thank you!