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Well-quasi-orders

Definition. A well-quasi-order on a set A is a transitive
relation = s.t. for all a4, ap, ... there exist i < jwith a; < a;.

(Non-)examples

e Any transitive relation on a finite set A is a wqo.

e The standard < onIN = {1,2,...} is awqo; | is not.
e The standard < on Z is not a wqo: —1, -2, ...

e Ais infinite = = is not a wgo: infinite antichains.

Lemma. If <isawqgoon Aand ay, a», ... € A, then
dii < I < ... With aj, = aj, = ..

Dickson’s Lemma. <;awqgoon A;fori=1,2 ~»
(a,b) <X (c,d) &= (a=1cand b =, d)isawgoon A; x As.



Higman’'s lemma 3.

A* = US_o A% is the set of words on A

Lemma (Higman)

If <'is awqgo on A, then < on A* defined by
(aq,...,8q) = (bq, ..., be) :< T strictly increasing
7t [d] — [e] with Vi: a; < by is awgo.

Proof

e If not, take a bad sequence, i.e., Wy, Wo, ... € A* with

Ai < j: w; < wj;; minimal in the following sense: wy is short-
est among all bad sequences starting with wy, ..., wy_1.

o Write w; = (a,-, U,') and find i1 < I < ... with aj, = aj, = ..

e Now wy, ..., W, _1, Uy, Uj, ... IS @ bad sequence ~~
contradiction.




Further well-quasi-orders ‘-

Theorem (Kruskal)
Generalisation of Higman'’s lemma to rooted, A-labelled
trees.

Theorem (Maclagan) I_L
The set of monomial ideals in K|xq, ..., Xn| is

well-quasi-ordered by I < J:= 12 J.




A new well-quasi-order 5.3

Tensor restriction fheorem (Blatter-D-Rupniewski)
Fq afinite field, d € Z~q V4, V>, ... f.d. Fg-spaces,

T: c Vi®d. Then Jdi < j, ¢ € Hom(V}, V}) : 90®d7_j =T;.

Corollary
Every property of order-d tensors over IFy preserved under
applying linear maps can be tested in polynomial time.

Multilinear analogue of:

Theorem (Robertson-Seymour)
The minor order on finite, undirected graphs is a wqgo.

e ST
> <




Prototypical use of a wgo in algebra 6

K a field (or Noetherian ring), fixed throughout

Hilbert’s basis theorem
Every ideal /'in K|x, ..., Xp] is finitely generated.

Proof template:

e monomials in xi, ..., X, are wgo wrt x*|x? (Dickson);
e hence with respect to any monomial order < the set
Im(/) = {Im(f) | f € I\ {0}} has finitely many |-minimal
elements: Im(fy), ..., Im(fy).

o f1,..., [, generate I (division with remainder).




Linear algebra
over categories



Representations of a category

Definition. C a category ~~ a C-module over K is a
(covariant) functor M : C — Mody, i.e.:

e VS : M(S) is an K-module;
oVt € Homp(S, T): M(f) : M(S) — M(T) is K-linear;
e and M(13) = 1M(S) and M(O’O 7T) — M(U) O M(T()

Remarks

e C-modules over K form an abelian category.

e Many natural notions, such as finitely generated.
e Each M(S) is a representation of Autg(S).

Example
C = FI: Finite sets with Injections

M(S) =K - (g) generated by 1 - {1,2} € M(|2])



FI-modules in the wild 9.3

Example

X a manifold ~ Confy : FI°° — manifolds, defined by
Confx(S) = {injective maps S — X}; the pure configu-
ration space of X.
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Theorem (Church-Ellenberg-Farb)
Fix p > 0. Under mild conditions on X, HP(Confy, Q) is a
finitely generated FI-module over Q.

Nice consequences, e.g. dimg(HP(Confx([n]),Q)) is poly-
nomial in n for n > 0, and splits into a fixed number of Sp-
representations (representation stabillity).



Finitely generated Fl-modules f0-

Theorem (Church-Ellenberg-Farb). Every sub-FI-module
V of a finitely generated FI-module M is finitely generated.

Same proof template (Sam-Snowden)

e Work with Ol: sets |d|, d € Z- with increasing maps.
e Mis aquotientof P =Py @ --- & Py, , where

P4(S) = K- Homg,(|d], S); suffices to prove for M = P.

e For basis elements 7t € Homg,(|d|,S) C P4(S) and ¢ €
Homgy(|d], T), write 1 <X ¢ if 39 € Homg(S, T) : 0 = @ o m.
e This is a wgo on the basis in each P, (Higman’s lemma for
A = {0, 1} with =), hence on the basis in P.

e Choose an Ol-compatible linear order on the basis in
each P(S). Then d finitely many v; € V(S5;) s.t. VS,
Vv € V(S)di:Im(v;) <Im(v). These generate V C P.




Similar finiteness results "

Sam-Snowden call Ol a Grobner category, and Fl a quasi-
Grobner category.

FS: Finite sets and Surjective maps
FS°P: the opposite category

Theorem (Sam-Snowden)
FS°P is quasi-Grobner. Hence any sub-FS°P-module of a
finitely generated FS°P-module is finitely generated.

Proof: (not so easy) exercise: find an ordered version of
FS°P and a suitable wqo, etc.

FI-modules appear naturally throughout math.
FS°P-modules not so much, but ...



The Lannes-Schwartz Artinian conjecture f2-

Let IF4 be a finite field, Vecg, the category of
finite-dimensional vector spaces over IFq.

Corollary (Putman, Sam, Showden)
Finitely generated Vecg -modules M over K are Noetherian.

Proof
e Have a functor Q : FS°® — Vecg_, Q(S) = F4S.
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e Show that M o Q is a finitely generated FS°®-module:
every T xbounded matrix over [F is of the form Q(rr) - A for
some bounded x bounded matrix A.




Commutative algebra
over categories

13



Algebras over a category 14-

Definition. A C-algebra over K is a functor from C to
(commutative, unital) K-algebras.

Natural notions of ideals and Noetherianity.

Coordinate rings of matrix spaces as Fl-algebras
e B(S) :=Klxj | i,j € 5]
o Ac(S) = K[X,-j ielc], je S]

Examples
e The ideals Iy € A and J, C B generated by all k x k-
determinants is finitely generated in both B (by kK + 1 ele-

ments) and in A (by (C

k) elements).

e B is not Noetherian.



Cohen’s theorem and applications is-

Theorem (Daniel Cohen, 1987)
The Fl-algebra Az : S — K|x; | i € [c],j € S] is Noetherian.

Many, many applications and follow-up work:

e the independent set theorem (Hillar-Sullivant)

e biv. Hilbert series (Nagel-Romer, Krone-Leykin-Snowden)
e co-dimension, projective dimension, regularity (Van
Le-Nagel-Nguyen-Romer)

e moment varieties of mixtures of products
(Alexandr-Kileel-Sturmfels, .. .)

Theorem (D-Eggermont-Farooq-Meier)

For any homomorphism R — A; of finitely generated
Fl-algebras, the image closure of Spec(A¢) — Spec(R) is
set-theoretically defined by finitely many equations.



Rank-one tensors as an FS-variety f6-

Fix n.

For any finite set S, define V(S) := (K™)®S, and for any
surjective m : T — S define V(m) : ( ) — V(S) by

Rjet Vi = Qics Ojer—1(j) Vj» Where © =
The locus X(S) C V(S) of rank-1 tensors is an FS-variety.

Theorem (D-Oosterhof)
Coordinate ring S — K|X(S)] is a Noetherian
FS°P-algebra. (Proof uses Maclagan’s theorem.)

~ |deals of iterated toric fibre products of undirected dis-
crete graphical models stabilise as the number of factors
tend to oo (builds on work by Rauh-Sullivant and Kahle-
Rauh).



The tensor restriction theorem 7.

Theorem (Blatter-D-Rupniewski)
Let P : Veclpq — Veclpq be any functor of finite length. Then

the Vec]%g-algebra V — ng(V) = SP(V)*/{fq —f | f)is
Noetherian.

Corollary
Given p; € P(V;),i =1,2,..., there exist i < j and
Proof

Let /; be the ideal of functions that vanish on all p with
p;j 2 pforallj=1,...,i. Then [;_y = I, for some j and
hence p; = p; for some i/ <.

Thank you!
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