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2 - 4Well-quasi-orders

Definition. A well-quasi-order on a set A is a transitive
relation ⪯ s.t. for all a1, a2, ... there exist i < j with ai ⪯ aj .

(Non-)examples
• Any transitive relation on a finite set A is a wqo.

• The standard ≤ on N = {1, 2, ...} is a wqo; | is not.
• The standard ≤ on Z is not a wqo: −1,−2, ...
• A is infinite ⇒ = is not a wqo: infinite antichains.

Dickson’s Lemma. ⪯i a wqo on Ai for i = 1, 2⇝
(a, b) ⪯ (c, d) :⇔ (a ⪯1 c and b ⪯2 d) is a wqo on A1 ×A2.

Lemma. If ⪯ is a wqo on A and a1, a2, ... ∈ A, then
∃i1 < i2 < ... with ai1 ⪯ ai2 ⪯ ...



3 - 4Higman’s lemma

A∗ =
⋃∞

d=0 Ad is the set of words on A

Lemma (Higman)
If ⪯ is a wqo on A, then ⪯ on A∗ defined by
(a1, ... , ad ) ⪯ (b1, ... , be) :⇔ ∃ strictly increasing
π : [d ] → [e] with ∀i : ai ⪯ bπ(i) is a wqo.

Proof
• If not, take a bad sequence, i.e., w1, w2, ... ∈ A∗ with
∄i < j : wi ⪯ wj ; minimal in the following sense: wk is short-
est among all bad sequences starting with w1, ... , wk−1.

• Write wi = (ai , ui ) and find i1 < i2 < ... with ai1 ⪯ ai2 ⪯ ...

• Now w1, ... , wi1−1, ui1 , ui2 , ... is a bad sequence⇝
contradiction. □



4 - 2Further well-quasi-orders

Theorem (Maclagan)
The set of monomial ideals in K [x1, ... , xn] is
well-quasi-ordered by I ⪯ J := I ⊇ J.

Theorem (Kruskal)
Generalisation of Higman’s lemma to rooted, A-labelled
trees.
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5 - 3A new well-quasi-order

Tensor restriction fheorem (Blatter-D-Rupniewski)
Fq a finite field, d ∈ Z≥0 V1, V2, ... f.d. Fq-spaces,
Ti ∈ V⊗d

i . Then ∃i < j , φ ∈ Hom(Vj , Vi ) : φ⊗d Tj = Ti .

Multilinear analogue of:

Theorem (Robertson-Seymour)
The minor order on finite, undirected graphs is a wqo.

Corollary
Every property of order-d tensors over Fq preserved under
applying linear maps can be tested in polynomial time.

⇝⇝



6 - 2Prototypical use of a wqo in algebra

Hilbert’s basis theorem
Every ideal I in K [x1, ... , xn] is finitely generated.

Proof template:
• monomials in x1, ... , xn are wqo wrt xα|x β (Dickson);
• hence with respect to any monomial order ≤ the set
lm(I) = {lm(f ) | f ∈ I \ {0}} has finitely many |-minimal
elements: lm(f1), ... , lm(fk ).
• f1, ... , fk generate I (division with remainder). □

K a field (or Noetherian ring), fixed throughout
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Linear algebra
over categories



8 - 3Representations of a category

Definition. C a category⇝ a C-module over K is a
(covariant) functor M : C → ModK , i.e.:

• ∀S : M(S) is an K -module;
• ∀π ∈ HomC(S, T ): M(f ) : M(S) → M(T ) is K -linear;
• and M(1S) = 1M(S) and M(σ ◦ π) = M(σ) ◦ M(π).

Example
C = FI: Finite sets with Injections

M(S) = K ·
(

S
2

)
, generated by 1 · {1, 2} ∈ M([2])

Remarks
• C-modules over K form an abelian category.
• Many natural notions, such as finitely generated.
• Each M(S) is a representation of AutC(S).



9 - 3FI-modules in the wild

Example
X a manifold ⇝ ConfX : FIop → manifolds, defined by
ConfX (S) = {injective maps S → X}; the pure configu-
ration space of X .

Theorem (Church-Ellenberg-Farb)
Fix p ≥ 0. Under mild conditions on X , Hp(ConfX , Q) is a
finitely generated FI-module over Q.

Nice consequences, e.g. dimQ(Hp(ConfX ([n]), Q)) is poly-
nomial in n for n ≫ 0, and splits into a fixed number of Sn-
representations (representation stability).

[3]
1

2 3
[2]

1 7→ 1, 2 7→ 3 1

2



10 - 4Finitely generated FI-modules

Theorem (Church-Ellenberg-Farb). Every sub-FI-module
V of a finitely generated FI-module M is finitely generated.

Same proof template (Sam-Snowden)
• Work with OI: sets [d ], d ∈ Z≥0 with increasing maps.
• M is a quotient of P = Pd1 ⊕ · · · ⊕ Pdk

, where
Pd (S) = K · HomOI([d ], S); suffices to prove for M = P.

• For basis elements π ∈ HomOI([d ], S) ⊆ Pd (S) and σ ∈
HomOI([d ], T ), write π ⪯ σ if ∃φ ∈ HomOI(S, T ) : σ = φ ◦π.
• This is a wqo on the basis in each Pd (Higman’s lemma for
A = {0, 1} with =), hence on the basis in P.

• Choose an OI-compatible linear order on the basis in
each P(S). Then ∃ finitely many vi ∈ V (Si ) s.t. ∀S,
∀v ∈ V (S)∃i : lm(vi ) ⪯ lm(v). These generate V ⊆ P. □



11 - 3Similar finiteness results

FS: Finite sets and Surjective maps
FSop: the opposite category

Theorem (Sam-Snowden)
FSop is quasi-Gröbner. Hence any sub-FSop-module of a
finitely generated FSop-module is finitely generated.

Sam-Snowden call OI a Gröbner category, and FI a quasi-
Gröbner category.

Proof: (not so easy) exercise: find an ordered version of
FSop and a suitable wqo, etc.

FI-modules appear naturally throughout math.
FSop-modules not so much, but . . .



12 - 3The Lannes-Schwartz Artinian conjecture

Let Fq be a finite field, VecFq the category of
finite-dimensional vector spaces over Fq .

Proof
• Have a functor Q : FSop → VecFq , Q(S) = FqS.

Corollary (Putman, Sam, Snowden)
Finitely generated VecFq -modules M over K are Noetherian.

S T
1
0
0
0

0
1

1
0

0
0
1
0

⇝

• Show that M ◦ Q is a finitely generated FSop-module:
every T×bounded matrix over Fq is of the form Q(π) · A for
some bounded × bounded matrix A. □

π Q(π)
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Commutative algebra
over categories



14 - 3Algebras over a category

Definition. A C-algebra over K is a functor from C to
(commutative, unital) K -algebras.

Coordinate rings of matrix spaces as FI-algebras
• B(S) := K [xij | i , j ∈ S]
• Ac(S) := K [xij | i ∈ [c], j ∈ S]

Natural notions of ideals and Noetherianity.

Examples
• The ideals Ik ⊆ A and Jk ⊆ B generated by all k × k -
determinants is finitely generated in both B (by k + 1 ele-

ments) and in A (by
(

c
k

)
elements).

• B is not Noetherian.



15 - 3Cohen’s theorem and applications

Theorem (Daniel Cohen, 1987)
The FI-algebra Ac : S 7→ K [xij | i ∈ [c], j ∈ S] is Noetherian.

Many, many applications and follow-up work:
• the independent set theorem (Hillar-Sullivant)
• biv. Hilbert series (Nagel-Römer, Krone-Leykin-Snowden)
• co-dimension, projective dimension, regularity (Van
Le-Nagel-Nguyen-Römer)
• moment varieties of mixtures of products
(Alexandr-Kileel-Sturmfels, . . . )

Theorem (D-Eggermont-Farooq-Meier)
For any homomorphism R → Ac of finitely generated
FI-algebras, the image closure of Spec(Ac) → Spec(R) is
set-theoretically defined by finitely many equations.



16 - 3Rank-one tensors as an FS-variety

Fix n.

For any finite set S, define V (S) := (K n)⊗S , and for any
surjective π : T → S define V (π) : V (T ) → V (S) by⊗

j∈T vj 7→
⊗

i∈S
⊙

j∈π−1(i) vj , where ⊙ =.

The locus X (S) ⊆ V (S) of rank-1 tensors is an FS-variety.

Theorem (D-Oosterhof)
Coordinate ring S 7→ K [X (S)] is a Noetherian
FSop-algebra. (Proof uses Maclagan’s theorem.)

⇝ Ideals of iterated toric fibre products of undirected dis-
crete graphical models stabilise as the number of factors
tend to ∞ (builds on work by Rauh-Sullivant and Kahle-
Rauh).



17 - 4The tensor restriction theorem

Theorem (Blatter-D-Rupniewski)
Let P : VecFq → VecFq be any functor of finite length. Then

the Vecop
Fq

-algebra V 7→ F
P(V )
q = SP(V )∗/⟨f q − f | f ⟩ is

Noetherian.

Corollary
Given pi ∈ P(Vi ), i = 1, 2, ..., there exist i < j and
φ : Vj → Vi with P(φ)pj = pi . (Notation: pi ⪯ pj )

Proof
Let Ii be the ideal of functions that vanish on all p with
pj ̸⪯ p for all j = 1, ... , i . Then Ij−1 = Ij for some j and
hence pi ⪯ pj for some i < j . □

Thank you!
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