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The B(aker)-N(orin) game on graphs

Requirements
finite, undirected graph I

d > 0 chips e.e e -

natural number r

Rules

B puts d chipson I e.e e -

N demands r, > 0 chipsatv with > r, =1
B wins iff he can fire to meet N’s demand
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Brill-Noether theorems for graphs

g:=e(l)—o()+ 1 genusof I
p=g—(r+1)(g—d+r)

Conjecture (Baker)

1. p > 0 = B has a winning starting position.

2. p < 0 = B may not have one, depending on I'.
(Vg 3I'Vd, r : p < 0 = Brill loses.)

Theorem (Baker)
1. is true if B may put chips at rational points of edges.
(uses sophisticated algebraic geometry)

Theorem (Cools-D-Payne-Robeva)

2. 1s true.
(implies sophisticated algebraic geometry)
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Chip dragging on graphs

Simultaneously moving all chips along edges, \
with zero net movement around every cycle. i

Lemma Q\Q
1. Chip dragging is realisable by chip firing.
2. W.lo.g. B drags instead of firing.

Example 1: [ a tree
p=g—(r+1)(g—d+r) = —(r+1)(—d+r)
Bwins&p>0&d>r

Example 2: a hyperelliptic graph

d=2r=1
Who wins?
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The B(rill)-N(oether) game on curves

)
‘,

Requirements

compact Riemann surface X
d chips

natural number r

Rules

B puts d chips on X

N demands r, > O chipsatx with > 7, =7
B wins iff he can drag to meet N’s demand
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Chip dragging on curves

Simultaneously moving chips c along paths 7, : 0, 1] — X, such that
YWy, Ya(t)) = 0 for all holomorphic 1-forms w on X.

Lemma

D =" [7.(0)] initial position

E =" [7.(1)] final position

& E — D is divisor of meromorphic function on X
drag-equivalent ~ (linear equivalence)

Example: torus \_\ v
only one holomorphic 1-form: dz \
condition: ) | () =0

when does B win?
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Dimension count

Wi, - - ., W, basis of holomorphic 1-forms

X=(21,...,0q) € X X---x X

v; # 0 tangent vector at x;

~ matrix A, = ({(w;, v;));; € C94

(c1v1, . . ., cqug) infinitesimal dragging direction = A(cy, ..., c5)" =0

x winning for B =
dragging x fills > r-dimensional variety d—r r
where ker A is > r-dimensional ! - -

# conditions on g X d-matrix to have d—r
> r-dimensional kernel: (g — d + r)

- » g—d+r
for B to have a winning position, “need”

d—r(g—d+r)>r
Sp=g—(r+1g—d+r)=0
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Brill-Noether theorems for curves

Theorem (Meis 1960, Kempf 1971, Kleiman-Laksov 1972)
p > 0 = B has a winning position.

Theorem (Griffiths-Harris 1980)
1. p < 0 = B may lose, depending on X.
(Vg 3X Vd,r : p < 0 = B loses.)

2. p > 0and X general
= p = dim{winning directions modulo dragging }

3. p = 0 and X general

= # = # standard tableaux of shape
(r4+1) x (g —d+r)withentries 1,2, ..., g

“«<A>» 8 /11



Baker’s Specialization Lemma

{ X }140 family of surfaces O/ N~ %
t

{X; }10 family of positions .
X, ~ [fort — 0 Xt ©
X, ~ ufort — 0

<_—_

Lemma
x; winning on X; for all £ # 0
= u winning on I'.

Consequences
1. Kleiman-Laksov = winning positions on metric I'
2. Cools-D-Payne-Robeva = Griffiths-Harris 1 and 2.
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Example of Cools-D-Payne-Robeva
g=4,d=3,r=1

% Z~»1,2,3,2,1

v L2121
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Chips at vertices?

Theorem (van der Pol-D)
p > 0and I a cactus graph
= B has winning positions with all chips at vertices.

Future goal:
Understand Kleiman-Laksov for (metric) graphs.
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