Tropical Brill-Noether theory

Jan Draisma

Tropical Day at Warwick, 17 February 2011

(j.w.w. Cools-Robeva-Payne and van der Pol)

44 4 A B B

The B(aker)-N(orin) game on graphs

Requirements

finite, undirected graph Γ $d \geq 0$ chips natural number r

Rules

B puts d chips on Γ N demands $r_v \geq 0$ chips at v with $\sum_v r_v = r$ B wins iff he can *fire* to meet N's demand

Brill-Noether theorems for graphs

$$g:=e(\Gamma)-v(\Gamma)+1$$
 genus of Γ $\rho:=g-(r+1)(g-d+r)$

Conjecture (Baker)

- 1. $\rho \ge 0 \Rightarrow B$ has a winning starting position.
- 2. $\rho < 0 \Rightarrow$ B may not have one, depending on Γ . ($\forall g \; \exists \Gamma \; \forall d, r : \rho < 0 \Rightarrow$ Brill loses.)

Theorem (Baker)

is true if B may put chips at rational points of edges.
 (uses sophisticated algebraic geometry)

Theorem (Cools-D-Payne-Robeva)

2. is true.

(implies sophisticated algebraic geometry)

Chip dragging on graphs

Simultaneously moving all chips along edges, with zero net movement around every cycle.

Lemma

- 1. Chip dragging is realisable by chip firing.
- 2. W.l.o.g. B drags instead of firing.

Example 1: Γ a tree

$$\begin{array}{l} \rho = g - (r+1)(g-d+r) = -(r+1)(-d+r) \\ \text{B wins} \Leftrightarrow \rho \geq 0 \Leftrightarrow d \geq r \end{array}$$

$$d = 2, r = 1$$
 Who wins?

The B(rill)-N(oether) game on curves

Requirements compact Riemann surface X d chips natural number r

Rules

B puts d chips on XN demands $r_x \geq 0$ chips at x with $\sum_x r_x = r$ B wins iff he can drag to meet N's demand

Chip dragging on curves

Simultaneously moving chips c along paths $\gamma_c: [0,1] \to X$, such that $\sum_c \langle \omega|_{\gamma(t)}, \gamma'_c(t) \rangle = 0$ for all holomorphic 1-forms ω on X.

Lemma

 $D = \sum_{c} [\gamma_{c}(0)] \text{ initial position}$ $E = \sum_{c} [\gamma_{c}(1)] \text{ final position}$ $\Leftrightarrow E - D \text{ is divisor of meromorphic function on } X$ $drag\text{-equivalent} \sim \textit{(linear equivalence)}$

Example: torus

only one holomorphic 1-form: $\mathrm{d}z$ condition: $\sum_{c} \gamma_c'(t) = 0$ when does B win?

Dimension count

```
\omega_1, \ldots, \omega_q basis of holomorphic 1-forms
 \mathbf{x} = (x_1, \dots, x_d) \in X \times \dots \times X
 v_i \neq 0 tangent vector at x_i
 \rightsquigarrow matrix A_{\mathbf{x}} = (\langle \omega_i, v_i \rangle)_{ij} \in \mathbb{C}^{g \times d}
 (c_1v_1,\ldots,c_dv_d) infinitesimal dragging direction \Rightarrow A(c_1,\ldots,c_d)^T=0
 \mathbf{x} winning for B \Rightarrow
 dragging x fills \geq r-dimensional variety
 where \ker A is > r-dimensional
for B to have a winning position, "need" g-d+r  d-r(g-d+r) \geq r   \Rightarrow \rho = g-(r+1)(g-d+r) \geq r
```

Brill-Noether theorems for curves

Theorem (Meis 1960, Kempf 1971, Kleiman-Laksov 1972) $\rho \ge 0 \Rightarrow$ B has a winning position.

Theorem (Griffiths-Harris 1980)

- 1. $\rho < 0 \Rightarrow$ B may lose, depending on X. ($\forall g \exists X \ \forall d, r : \rho < 0 \Rightarrow$ B loses.)
- 2. $\rho \ge 0$ and X general $\Rightarrow \rho = \dim\{\text{winning directions modulo dragging}\}$
- 3. $\rho = 0$ and X general $\Rightarrow \# = \#$ standard tableaux of shape $(r+1) \times (g-d+r)$ with entries $1, 2, \ldots, g$

Baker's Specialization Lemma

 $\{X_t\}_{t\neq 0}$ family of surfaces $\{\mathbf{x}_t\}_{t\neq 0}$ family of positions $X_t \leadsto \Gamma$ for $t \to 0$ $\mathbf{x}_t \leadsto \mathbf{u}$ for $t \to 0$

Lemma

 \mathbf{x}_t winning on X_t for all $t \neq 0$ $\Rightarrow \mathbf{u}$ winning on Γ .

Consequences

- 1. Kleiman-Laksov \Rightarrow winning positions on *metric* Γ
- 2. Cools-D-Payne-Robeva \Rightarrow Griffiths-Harris 1 and 2.

Example of Cools-D-Payne-Robeva

$$g=4, d=3, r=1 \\ \leadsto \rho=0$$

1	3		1 0 2 0 1
2	4	<i>~</i> →	1, 2, 3, 2, 1

1	2	→	1	2	1	2	1
3	4	• • •	Τ,	۷,	т,	۷,	Т

Chips at vertices?

Theorem (van der Pol-D)

 $\rho \geq 0$ and Γ a cactus graph

 \Rightarrow B has winning positions with all chips at vertices.

Future goal:

Understand Kleiman-Laksov for (metric) graphs.