

Tropical reparameterisations (tropically unirational varieties)

Jan Draisma j.draisma@tue.nl

December 2011

Tropical Geometry Castro Urdiales

(Based on discussions with Bart Frenk, Filip Cools, Wouter Castryck, Anders Jensen, Bernd Sturmfels, Josephine Yu, ...)

Tropical reparameterisations (tropically unirational varieties)

Jan Draisma j.draisma@tue.nl

December 2011

Tropical Geometry
Castro Urdiales

(Based on discussions with Bart Frenk, Filip Cools, Wouter Castryck, Anders Jensen, Bernd Sturmfels, Josephine Yu, ...)

Set-up

K algebraically closed field $v: K^* =: T \to \mathbb{R}$ valuation (perhaps trivial) $f \in K(x_1, \dots, x_m)$ $\longrightarrow \operatorname{Trop}(f) : \mathbb{R}^m \to \mathbb{R}$

$$\varphi: T^m \dashrightarrow T^n$$

$$\leadsto \operatorname{Trop}(\varphi): \mathbb{R}^m \to \mathbb{R}^n$$

Definition

 $X \subseteq T^n$ is tropically uni-rational $\underbrace{\text{if } \exists p}_{} \exists \psi : T^p \dashrightarrow T^n \text{ s.t.}$ $\underline{\text{im } \psi} = X \text{ and}$ $\underline{\text{im } \text{Trop}(\psi)} = \text{Trop}(X).$

Remarks

Always im $\operatorname{Trop}(\psi) \subseteq \operatorname{Trop}(\operatorname{im} \psi)$. We allow $p \gg \dim X$. Call such ψ tropically surjective.

Line

 $X \subseteq T^2$ defined by y = x + 1 $\varphi: T^1 \dashrightarrow T^2, \ t \mapsto (t, t + 1)$ not tropically surjective!

But $\psi: T^2 \dashrightarrow X \subseteq T^2$, $(s,u) \mapsto (\frac{1+s}{u-s}, \frac{1+u}{u-s})$ is tropically surjective.

So X is tropically unirational. Note: cannot take p = 1.

Set-up

K algebraically closed field $v: K^* =: T \to \mathbb{R}$ valuation (perhaps trivial) $f \in K(x_1, \dots, x_m)$ $\leadsto \operatorname{Trop}(f): \mathbb{R}^m \to \mathbb{R}$ $\varphi: T^m \dashrightarrow T^n$ $\leadsto \operatorname{Trop}(\varphi): \mathbb{R}^m \to \mathbb{R}^n$

Definition

 $X \subseteq T^n$ is tropically uni-rational $\underbrace{\text{if } \exists p}_{} \exists \psi : T^p \dashrightarrow T^n \text{ s.t.}$ $\underline{\text{im } \psi} = X \text{ and}$ $\underline{\text{im } \text{Trop}(\psi)} = \text{Trop}(X).$

Remarks

Always im $\operatorname{Trop}(\psi) \subseteq \operatorname{Trop}(\operatorname{im} \psi)$. We allow $p \gg \dim X$. Call such ψ tropically surjective.

Line

 $X \subseteq T^2$ defined by y = x + 1 $\varphi: T^1 \dashrightarrow T^2, \ t \mapsto (t, t + 1)$ not tropically surjective!

But $\psi: T^2 \dashrightarrow X \subseteq T^2$, $(s,u) \mapsto (\frac{1+s}{u-s}, \frac{1+u}{u-s})$ is tropically surjective.

So X is tropically unirational. Note: cannot take p = 1.

Central question

Is every unirational variety tropically unirational?

Lemma

 $X\subseteq T^n$ tropically unirational $\pi:T^n\to T^q$ homomorphism then $\overline{\pi(X)}$ tropically unirational. (If ψ is a tropically surjective parameterisation of X, then $\pi\circ\psi$ is tropically surjective to $\overline{\pi(X)}$.)

Theorem (Yu-Yuster)

Linear spaces X are tropically unirational.

(Take matrix ψ with one column for each minimal-support vector in $\overline{X} \subseteq K^n$.)

Some examples...

Example

Affine-linear spaces X are tropically unirational. (Apply Yu-Yuster to cone \tilde{X} spanned by $X \times \{1\} \subseteq T^{n+1}$, and use homomorphism $\pi: T^{n+1} \to T^n, \ (y,t) \mapsto t^{-1}y$.)

Example (Speyer)

Rational curves X are tropically uni-rational.

(Say X parameterised by $\varphi(t)=(f_1(t),\ldots,f_n(t)).$ Factor $f_i(t)=\prod_{j=1}^l(t-t_j)^{e_{ij}}\in K(t),$ and note $X=\pi(Y)$ with Y affine-linear parameterised by $(t-t_1,\ldots,t-t_l)$ and π a torus homomorphism.)

Central question

Is every unirational variety tropically unirational?

Lemma

 $X\subseteq T^n$ tropically unirational $\pi:T^n\to T^q$ homomorphism then $\overline{\pi(X)}$ tropically unirational. (If ψ is a tropically surjective parameterisation of X, then $\pi\circ\psi$ is tropically surjective to $\overline{\pi(X)}$.)

Theorem (Yu-Yuster)

Linear spaces X are tropically unirational.

(Take matrix ψ with one column for each minimal-support vector in $\overline{X} \subseteq K^n$.)

Some examples...

Example

Affine-linear spaces X are tropically unirational. (Apply Yu-Yuster to cone \tilde{X} spanned by $X \times \{1\} \subseteq T^{n+1}$, and use homomorphism $\pi: T^{n+1} \to T^n, \ (y,t) \mapsto t^{-1}y$.)

Example (Speyer)

Rational curves X are tropically uni-rational.

(Say X parameterised by $\varphi(t)=(f_1(t),\ldots,f_n(t)).$ Factor $f_i(t)=\prod_{j=1}^l(t-t_j)^{e_{ij}}\in K(t),$ and note $X=\pi(Y)$ with Y affine-linear parameterised by $(t-t_1,\ldots,t-t_l)$ and π a torus homomorphism.)

...and some more

Example

Grassmannian $G_{2,n} \subseteq T^{\binom{n}{2}}$ is tropically unirational. Parameterised by $(u_i u_j (x_i - x_j))_{i < j}$, hence image of linear space under torus homomorphism.

Similarly: A-discriminants (Dickenstein - Feichtner - Sturmfels, Horn Uniformisation), rank-2 matrices, ...

Reparameterisations

$$X\subseteq T^n \text{ unirational } \ \varphi:T^m\dashrightarrow T^n \text{ with } \overline{\mathrm{im}\, \varphi}=X$$

Definition

Rational maps $T^p \dashrightarrow T^n$ of the form $\varphi \circ \alpha$ with $\alpha : T^p \dashrightarrow T^m$ are reparameterisations of φ .

Strategy

To prove X tropically unirational, try and find a tropically surjective reparameterisation of φ .

Note: if φ is birational to X, then every dominant $\psi: T^p \dashrightarrow X$ is a reparameterisation of φ .

...and some more

Example

Grassmannian $G_{2,n} \subseteq T^{\binom{n}{2}}$ is tropically unirational. Parameterised by $(u_i u_j (x_i - x_j))_{i < j}$, hence image of linear space under torus homomorphism.

Similarly: A-discriminants (Dickenstein - Feichtner - Sturmfels, Horn Uniformisation), rank-2 matrices, ...

Reparameterisations

$$X\subseteq T^n$$
 unirational $\varphi:T^m\dashrightarrow T^n$ with $\overline{\mathrm{im}\,\varphi}=X$

Definition

Rational maps $T^p \dashrightarrow T^n$ of the form $\varphi \circ \alpha$ with $\alpha : T^p \dashrightarrow T^m$ are reparameterisations of φ .

Strategy

To prove X tropically unirational, try and find a tropically surjective reparameterisation of φ .

Note: if φ is birational to X, then every dominant $\psi: T^p \dashrightarrow X$ is a reparameterisation of φ .

Combining reparameterisations

Combination Lemma

Assume $\varphi: K^m \to K^n$ regular, $\alpha_i: K^{p_i} \to K^m$ regular, i=1,2 $\alpha_1(0) = \alpha_2(0) = 0$, and set $\psi_i:=\varphi\circ\alpha_i$, i=1,2.

Then im $\operatorname{Trop}(\psi_1)$, im $\operatorname{Trop}(\psi_2) \subseteq \operatorname{im} \operatorname{Trop}(\psi)$, where $\psi := \varphi \circ \alpha$ and $\alpha : K^{p_1+p_2} \to K^m$, $\alpha(u,v) := \alpha_1(u) + \alpha_2(v)$.

 $(\varphi(\alpha_1(u) + \alpha_2(v)) = \varphi(\alpha_1(u)) + \sum_{j=1}^{p_2} v_j \mu_j(u, v).$ Given tropical values for u, sufficiently large values for v_j make this tropicalise to $\text{Trop}(\psi_1)(u).$ Similarly for ψ_2 .)

From finitely many to one

Proposition

A rational variety $X \subseteq T^n$ is tropically unirational iff $\exists N \exists \psi_i : T^{p_i} \dashrightarrow X, i = 1, \dots, N$ such that $\bigcup_{i=1}^N \operatorname{im} \operatorname{Trop}(\psi_i) = \operatorname{Trop}(X)$.

(\Leftarrow : Take $\varphi: T^m \dashrightarrow X$ birational, $\alpha_i: T^{p_i} \dashrightarrow T^m$ such that $\psi_i = \varphi \circ \alpha_i$.

Homogenise φ, α_i to homogeneous regular maps $\tilde{\varphi}, \tilde{\alpha}_i$ of positive degree with $\tilde{\varphi} \circ \tilde{\alpha}_i$ parameterising cone $\tilde{X} \subseteq K^{n+1}$. Apply Combination Lemma to obtain a single $\tilde{\psi}$, and dehomogenise to obtain ψ .

Note: ψ automatically dominant.)

Combining reparameterisations

Combination Lemma

Assume $\varphi: K^m \to K^n$ regular, $\alpha_i: K^{p_i} \to K^m$ regular, i=1,2 $\alpha_1(0) = \alpha_2(0) = 0$, and set $\psi_i:=\varphi\circ\alpha_i$, i=1,2.

Then im $\operatorname{Trop}(\psi_1)$, im $\operatorname{Trop}(\psi_2) \subseteq \operatorname{im} \operatorname{Trop}(\psi)$, where $\psi := \varphi \circ \alpha$ and $\alpha : K^{p_1+p_2} \to K^m$, $\alpha(u,v) := \alpha_1(u) + \alpha_2(v)$.

 $(\varphi(\alpha_1(u) + \alpha_2(v)) = \varphi(\alpha_1(u)) + \sum_{j=1}^{p_2} v_j \mu_j(u, v).$ Given tropical values for u, sufficiently large values for v_j make this tropicalise to $\text{Trop}(\psi_1)(u).$ Similarly for ψ_2 .)

From finitely many to one

Proposition

A rational variety $X \subseteq T^n$ is tropically unirational iff $\exists N \exists \psi_i : T^{p_i} \dashrightarrow X, i = 1, \dots, N$ such that $\bigcup_{i=1}^N \operatorname{im} \operatorname{Trop}(\psi_i) = \operatorname{Trop}(X)$.

(\Leftarrow : Take $\varphi: T^m \dashrightarrow X$ birational, $\alpha_i: T^{p_i} \dashrightarrow T^m$ such that $\psi_i = \varphi \circ \alpha_i$.

Homogenise φ, α_i to homogeneous regular maps $\tilde{\varphi}, \tilde{\alpha}_i$ of positive degree with $\tilde{\varphi} \circ \tilde{\alpha}_i$ parameterising cone $\tilde{X} \subseteq K^{n+1}$. Apply Combination Lemma to obtain a single $\tilde{\psi}$, and dehomogenise to obtain ψ .

Note: ψ automatically dominant.)

Birational projections

 $X\subseteq T^n$ unirational, dimension d $I\subseteq [n]=\{1,\ldots,n\}, |I|=d$ $\pi_I:T^n\to T^I$ projection

Definition

P d-dimensional polyhedron of $\operatorname{Trop}(X)$ is I-vertical if $\dim(\operatorname{Trop}(\pi_I)P) < d$

Proposition

If $\pi_I|_X : X \longrightarrow T^I$ birational with inverse φ , then im $\operatorname{Trop} \varphi$ is the union U of all P that are *not* I-vertical.

(\supseteq : Points u for which $\operatorname{Trop}(\pi_I)(u)$ is not in the corner locus of $\operatorname{Trop} \varphi$ are dense in U and satisfy $\operatorname{Trop}(\varphi)(\operatorname{Trop}(\pi_I)u) = u$.)

Two applications...

Example

 $X\subseteq K^n$ d-dimensional affinelinear space.

Then all I, |I| = d with $\dim \pi_I X = d$ (bases of the matroid) satisfy the requirement. Hence X is tropically unirational. (With more work, alternative proof of Yu-Yuster.)

Example

$$\begin{split} X &= \{A \in T^{n \times n} \mid \det(A) = 0\} \\ \text{Each } I \subseteq [n] \times [n] \text{ of cardinality} \\ n^2 - 1 \text{ satisfies the requirement:} \\ T^{(n-1) \times (n-1)} \times (T^{(n-1)})^2 \to T^{n \times n}, \\ (A, v, w) \mapsto \begin{bmatrix} A & v \\ w^t & w^t A^{-1}v \end{bmatrix} \\ \end{split}$$

Hence X is tropically unirational.

Birational projections

 $X\subseteq T^n$ unirational, dimension d $I\subseteq [n]=\{1,\ldots,n\}, |I|=d$ $\pi_I:T^n\to T^I$ projection

Definition

P d-dimensional polyhedron of $\operatorname{Trop}(X)$ is I-vertical if $\dim(\operatorname{Trop}(\pi_I)P) < d$

Proposition

If $\pi_I|_X : X \longrightarrow T^I$ birational with inverse φ , then im $\operatorname{Trop} \varphi$ is the union U of all P that are *not* I-vertical.

 \supseteq : Points u for which $\operatorname{Trop}(\pi_I)(u)$ is not in the corner locus of $\operatorname{Trop} \varphi$ are dense in U and satisfy $\operatorname{Trop}(\varphi)(\operatorname{Trop}(\pi_I)u) = u$.)

Two applications...

Example

 $X\subseteq K^n$ d-dimensional affinelinear space.

Then all I, |I| = d with $\dim \pi_I X = d$ (bases of the matroid) satisfy the requirement. Hence X is tropically unirational. (With more work, alternative proof of Yu-Yuster.)

Example

 $X = \{A \in T^{n \times n} \mid \det(A) = 0\}$ Each $I \subseteq [n] \times [n]$ of cardinality $n^2 - 1$ satisfies the requirement: $T^{(n-1) \times (n-1)} \times (T^{(n-1)})^2 \to T^{n \times n},$ $(A, v, w) \mapsto \begin{bmatrix} A & v \\ w^t & w^t A^{-1}v \end{bmatrix}$ Hence X is tropically unirational.

... and one more

(suggested by Cools and Sturmfels) $Y\subseteq K^5$ parameterised by (s^4,s^3t,\ldots,t^4) (cone over rational normal quartic)

 $X = \overline{Y + Y}$ first secant variety, zero set of

$$\det \begin{bmatrix} z_0 & z_1 & z_2 \\ z_1 & z_2 & z_3 \\ z_2 & z_3 & z_4 \end{bmatrix}$$

$$= z_0 z_2 z_4 + 2z_1 z_2 z_3 - z_1^2 z_4 - z_0 z_3^2 - z_2^3$$

= $a + 2b - c - d - e$

Secant variety, continued

 $I = \{1, 2, 3, 4\}$ and $J = \{0, 1, 2, 3\}$ satisfy $\pi_I, \pi_J : X \dashrightarrow T^4$ birational.

Two suitable reparameterisations of the parameterisation $(s_1^4 + s_2^4, \dots, t_1^4 + t_2^4)$ tropicalise to maps that together cover the cone where $b = e \leq a, c, d$. Hence X is tropically unirational.

...and one more

(suggested by Cools and Sturmfels) $Y\subseteq K^5$ parameterised by (s^4,s^3t,\ldots,t^4) (cone over rational normal quartic)

 $X = \overline{Y + Y}$ first secant variety, zero set of

$$\det \begin{bmatrix} z_0 & z_1 & z_2 \\ z_1 & z_2 & z_3 \\ z_2 & z_3 & z_4 \end{bmatrix}$$

$$= z_0 z_2 z_4 + 2 z_1 z_2 z_3 - z_1^2 z_4 - z_0 z_3^2 - z_2^3$$

= $a + 2b - c - d - e$

Secant variety, continued

$$I = \{1, 2, 3, 4\}$$
 and $J = \{0, 1, 2, 3\}$ satisfy $\pi_I, \pi_J : X \dashrightarrow T^4$ birational.

Two suitable reparameterisations of the parameterisation $(s_1^4 + s_2^4, \dots, t_1^4 + t_2^4)$ tropicalise to maps that together cover the cone where $b = e \leq a, c, d$. Hence X is tropically unirational.

Two loose ends

Observation

 $\varphi: T^m \longrightarrow T^n, X = \overline{\operatorname{im} \varphi},$ $\dim X = d, \pi: T^n \longrightarrow T^{d+1}$ generic homomorphism Then φ has a tropically surjective reparameterisation iff $\pi \circ \varphi$ does.

Theorem

char K=0 $X\subseteq T^n$ unirational $\operatorname{Trop}(X)=P_1\cup\ldots\cup P_N$ $P_i\ v(K^*)$ -rational relatively open polyhedra Then X has a parameterisation ψ such that $\operatorname{im}\operatorname{Trop}(\psi)$ contains open subsets of all P_i .

(Exercise in valuations.)

Central question

Are all unirational varieties tropically unirational?

Thank you.

Two loose ends

Observation

 $\varphi: T^m \longrightarrow T^n, X = \overline{\operatorname{im} \varphi},$ $\dim X = d, \pi: T^n \longrightarrow T^{d+1}$ generic homomorphism Then φ has a tropically surjective reparameterisation iff $\pi \circ \varphi$ does.

Theorem

char K = 0

 $X \subseteq T^n$ unirational

 $\operatorname{Trop}(X) = P_1 \cup \ldots \cup P_N$

 P_i $v(K^*)$ -rational relatively open polyhedra

Then X has a parameterisation ψ such that $\operatorname{im}\operatorname{Trop}(\psi)$ contains open subsets of all P_i .

(Exercise in valuations.)