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Two ways to describe a line

implicitly, by equations
X = {(z,9) | y— o — 1 =0} C A2

explicitly, by parameterisation
¢:A' = A u— (u,u+1); X =imeo

elimination theory: parameterisation ~~ equations?




Tropicalising those two ways

by equations
X={(z,y) |y—z—-1=0} C A’
TX = {(&,n) | min{n, £, 0} is attained at least twice} C R..”

by parameterisation
¢ ur— (u,u+1)
T¢: v (v,min{v,0})

(umin(v,0))

im7 ¢ C TX,in general C
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Reparameterisation for the line

a: A - Al s> s—1
¢ =¢oa: A - A? s (s—1,s)
T(¢): R, — R o+ (min{c,0},0)

(umin(v,0)) (min(G,0),0)

o

Two reparameterisations tropically cover 7 X




Four questions

¢ : A™ — A" polynomial map
X :=im ¢ algebraic variety
thenim7¢ CT7TX

37 finitely many (or one) reparameterisations a; : AP — A™
(or rational maps) such that U; im 7 (¢ o o) = 7 (X).

Remark. Sturmfels-Tevelev-Yu (2007) describe 7 X from ¢ in case of
generic coefficients; generalisations use Hacking-Keel-Tevelev's geometric

tropicalisation (2007).




Two observations

Lemma. If ¢ = (¢1, ..., ¢,) with all ¢; homogeneous of same degree, then the
four questions are equivalent.

Multiply with common denominator;
combine several reparameterisations into one.

Proposition. All four questions reduce to the case where X is a hypersurface in
ATL

Choose “generic” mononomial map 7 : A" — A%*! where d = dim X;
reparameterisations that work for 7 o ¢ also work for ¢.
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Linear spaces

Theorem (Yu-Yuster, 20006). ¢ : A™ — X C A" linear, given by a matrix ¢
Then im T ¢ = T X iff every vector v € X of minimal support (cocircuit) is
scalar multiple of a column of ¢.

(This can be achieved form by composing ¢ with a linear map A? — A™.)

t 0
Example. ¢ : A? — A’ givenby ¢ = [0 1| over C((t))
1t
X ={(z,y,2)" | z +ty — tz =0}
TX = Cl UCQUCg with
Cs={(&nn+1)|§£=n+2}

To:(a,B)— (a+ 1,8, min{a, 5+ 1}); im7T ¢ =CyUCs
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Example, continued

The last matrix contains all cocircuits of X, so

by Yu and Yuster’s theorem.
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A Grassmannian from a linear space

qunHXgAQ)) (xla"wxn)'_) (xi_$j>i<j
zero patterns in the image «~» partitions of {1,...,n}
cocircuits «~ partitions into two parts

so Ja : A7 71 — A" linear with im T(poa)=TX

Y A" x A" - Y C A(Z), (u, ) — (wui(x; — ;) )i<;

Y = Grassmannian of 2-dimensional subspaces of n-space
im 7 (¢ o (id X)) = 7Y, the tropical Grassmannian
studied by Speyer and Sturmfels (2004) and many others

Points of Y correspond to tree metrics, by the above obtained
from tropical linear combinations of 2-partitions by stretching ends.




Example withn =4

{1, 234} short-hand for (dij)i<j with dlj — (0 and all other dz’j = O

(1®{1,234}) ® (2®{13,24}) ® (3 ® {14,23}})

equals the tree metric of

1 2
N
-1/2

1 3/2

3 4

Remark. Internal edges have negative length.
Edges adjacent to leaves can be arbitrarily altered using the v;.
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Local tropical reparameterisations

¢ : A™ — A" polynomial map
X :=im ¢ algebraic variety of dimension d

Theorem. For almostall £ € 7 X
Jo : T — A™ such that
im 7 (¢ o ) D a d-dimensional neighbourhood of €.

Remark. e « is allowed to have Laurent polynomial components

e d is also the dimension of 7 X

e if all ¢, homogeneous of the same degree, £ such local reparameterisa-
tions can be combined to a reparameterisation A — A™

e almost all means the ; span a d-dimensional Q-subspace of R




Proof sketch

1. assume &1, . . ., &, linearly independent over QQ

2. consider K = C(ty, . .., t;) with valuation v(t;) = &

3. take a point p of A" with coordinates in K such that v(p(p)) = &; exists

4. approximate p with a point ¢ in (C[tfl/N . tcjzd/N]

such that v(¢(q)) = & (multivariate Puiseux theorem)
1/N

5. set u; ==,
6. q(uy, ..., u,) is the required reparameterisation

Remark. e not yet very constructive, but I'm collaborating with Anders
Jenssen to make it so

e not clear that finitely many suffice...
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