# Tropical reparameterisations

Jan Draisma Eindhoven University of Technology

Bernd Sturmfels's Clifford Lectures, 12 November 2008

 $\blacktriangleleft \blacktriangle \blacktriangleright \blacktriangleright$ 

### Two ways to describe a line

#### implicitly, by equations

$$X := \{(x, y) \mid y - x - 1 = 0\} \subset \mathbb{A}^2$$

#### explicitly, by parameterisation

$$\phi: \mathbb{A}^1 \to \mathbb{A}^2, \quad u \mapsto (u, u+1); \quad X = \operatorname{im} \phi$$

elimination theory: parameterisation → equations?

# Tropicalising those two ways

#### by equations

$$X = \{(x,y) \mid y - x - 1 = 0\} \subset \mathbb{A}^2$$
  
 $\mathcal{T}X = \{(\xi,\eta) \mid \min\{\eta,\xi,0\} \text{ is attained at least twice}\} \subset \mathbb{R}_{\infty}^2$ 

#### by parameterisation

$$\phi: u \mapsto (u, u+1)$$

$$\mathcal{T}\phi: v \mapsto (v, \min\{v, 0\})$$



### Reparameterisation for the line

$$\alpha: \mathbb{A}^1 \to \mathbb{A}^1, \quad s \mapsto s - 1$$

$$\phi' := \phi \circ \alpha: \mathbb{A}^1 \to \mathbb{A}^2, \quad s \mapsto (s - 1, s)$$

$$\mathcal{T}(\phi'): \mathbb{R}_{\infty} \to \mathbb{R}_{\infty}^2, \quad \sigma \mapsto (\min\{\sigma, 0\}, \sigma)$$



Two reparameterisations tropically cover  $\mathcal{T}X$ 

#### Four questions

 $\phi: \mathbb{A}^m \longrightarrow \mathbb{A}^n$  polynomial map  $X:=\overline{\operatorname{im} \phi}$  algebraic variety then  $\operatorname{im} \mathcal{T} \phi \subseteq \mathcal{T} X$ 

 $\exists$ ? finitely many (or one) reparameterisations  $\alpha_i : \mathbb{A}^{p_i} \to \mathbb{A}^m$  (or rational maps) such that  $\bigcup_i \operatorname{im} \mathcal{T}(\phi \circ \alpha_i) = \mathcal{T}(X)$ .

**Remark.** Sturmfels-Tevelev-Yu (2007) describe  $\mathcal{T}X$  from  $\phi$  in case of generic coefficients; generalisations use Hacking-Keel-Tevelev's geometric tropicalisation (2007).

#### Two observations

**Lemma.** If  $\phi = (\phi_1, \dots, \phi_n)$  with all  $\phi_i$  homogeneous of same degree, then the four questions are equivalent.

Multiply with common denominator; combine several reparameterisations into one.

**Proposition.** All four questions reduce to the case where X is a hypersurface in  $\mathbb{A}^n$ .

Choose "generic" mononomial map  $\pi: \mathbb{A}^n \to \mathbb{A}^{d+1}$  where  $d = \dim X$ ; reparameterisations that work for  $\pi \circ \phi$  also work for  $\phi$ .

# Linear spaces

**Theorem (Yu-Yuster, 2006).**  $\phi: \mathbb{A}^m \to X \subseteq \mathbb{A}^n$  linear, given by a matrix  $\phi$  Then im  $\mathcal{T}\phi = \mathcal{T}X$  iff every vector  $v \in X$  of minimal support (cocircuit) is scalar multiple of a column of  $\phi$ .

(This can be achieved form by composing  $\phi$  with a linear map  $\mathbb{A}^p \to \mathbb{A}^m$ .)

**Example.** 
$$\phi: \mathbb{A}^2 \to \mathbb{A}^3$$
 given by  $\phi = \begin{bmatrix} t & 0 \\ 0 & 1 \\ 1 & t \end{bmatrix}$  over  $\mathbb{C}((t))$   $X = \{(x,y,z)^T \mid x+t^2y-tz=0\}$   $TX = C_1 \cup C_2 \cup C_3$  with  $C_1 = \{(\xi,\xi-2,\zeta) \mid \zeta \geq \xi-1\}$   $C_2 = \{(\xi,\eta,\xi-1) \mid \eta \geq \xi-2\}$   $C_3 = \{(\xi,\eta,\eta+1) \mid \xi \geq \eta+2\}$ 

$$\mathcal{T}\phi: (\alpha,\beta) \mapsto (\alpha+1,\beta,\min\{\alpha,\beta+1\}); \operatorname{im} \mathcal{T}\phi = C_2 \cup C_3$$

### Example, continued

$$\phi \circ \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} t & 0 \\ 0 & 1 \\ 1 & t \end{bmatrix} \circ \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} t & 0 & t^2 \\ 0 & 1 & -1 \\ 1 & t & 0 \end{bmatrix}$$

The last matrix contains all cocircuits of X, so

$$\operatorname{im} \mathcal{T} \left( \phi \circ \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & -1 \end{bmatrix} \right) = C_1 \cup C_2 \cup C_3 = \mathcal{T} X$$

by Yu and Yuster's theorem.

# A Grassmannian from a linear space

 $\phi: \mathbb{A}^n \to X \subseteq \mathbb{A}^{\binom{n}{2}}, \quad (x_1, \dots, x_n) \mapsto (x_i - x_j)_{i < j}$  zero patterns in the image  $\longleftrightarrow$  partitions of  $\{1, \dots, n\}$  cocircuits  $\longleftrightarrow$  partitions into two parts so  $\exists \alpha: \mathbb{A}^{2^{n-1}-1} \to \mathbb{A}^n$  linear with im  $\mathcal{T}(\phi \circ \alpha) = \mathcal{T}X$ 

$$\psi: \mathbb{A}^n \times \mathbb{A}^n \to Y \subseteq \mathbb{A}^{\binom{n}{2}}, \quad (u, x) \mapsto (u_i u_j (x_i - x_j))_{i < j}$$

Y = Grassmannian of 2-dimensional subspaces of n-space im  $\mathcal{T}(\psi \circ (\operatorname{id} \times \alpha)) = \mathcal{T}Y$ , the *tropical Grassmannian* studied by Speyer and Sturmfels (2004) and many others

Points of *Y* correspond to *tree metrics*, by the above obtained from tropical linear combinations of 2-partitions by stretching ends.

#### Example with n=4

 $\{1,234\}$  short-hand for  $(d_{ij})_{i< j}$  with  $d_{1j}=0$  and all other  $d_{ij}=\infty$ 

 $(1 \otimes \{1, 234\}) \oplus (2 \otimes \{13, 24\}) \oplus (3 \otimes \{14, 23\}\})$  equals the tree metric of



**Remark.** Internal edges have negative length. Edges adjacent to leaves can be arbitrarily altered using the  $v_i$ .

### Local tropical reparameterisations

 $\phi: \mathbb{A}^m \longrightarrow \mathbb{A}^n$  polynomial map  $X:= \overline{\operatorname{im} \phi} \text{ algebraic variety of dimension } d$ 

```
Theorem. For almost all \xi \in \mathcal{T}X \exists \alpha : \mathbb{T}^d \to \mathbb{A}^m such that \operatorname{im} \mathcal{T}(\phi \circ \alpha) \supset a d-dimensional neighbourhood of \xi.
```

**Remark.** •  $\alpha$  is allowed to have Laurent polynomial components

- d is also the dimension of TX
- if all  $\phi_i$  homogeneous of the same degree, k such local reparameterisations can be combined to a reparameterisation  $\mathbb{A}^{kd} \to \mathbb{A}^m$
- almost all means the  $\xi_i$  span a d-dimensional  $\mathbb{Q}$ -subspace of  $\mathbb{R}$

11/12

#### **Proof sketch**

- 1. assume  $\xi_1, \ldots, \xi_d$  linearly independent over  $\mathbb{Q}$
- 2. consider  $K = \mathbb{C}(t_1, \dots, t_d)$  with valuation  $v(t_i) = \xi_i$
- 3. take a point p of  $\mathbb{A}^m$  with coordinates in  $\overline{\widehat{K}}$  such that  $v(\phi(p))=\xi$ ; exists
- 4. approximate p with a point q in  $\mathbb{C}[t_1^{\pm 1/N}, \dots, t_d^{\pm 1/N}]$  such that  $v(\phi(q)) = \xi$  (multivariate Puiseux theorem)
- 5. set  $u_i := t_i^{1/N}$
- 6.  $q(u_1, \ldots, u_n)$  is the required reparameterisation
- **Remark.** not yet very constructive, but I'm collaborating with Anders Jenssen to make it so
  - not clear that finitely many suffice...