

A tropical approach to secant dimensions

Jan Draisma

Madrid, 30 March 2007

Typical example: polynomial interpolation in two variables

Set-up:

 $d \in \mathbb{N}$

 p_1, \ldots, p_k general points in \mathbb{C}^2 codim $\{f \in \mathbb{C}[x,y]_{\leq d} \mid \forall i : f(p_i) = f_x(p_i) = f_y(p_i) = 0\} =??$ expect: min $\{3k, \binom{d+2}{2}\}$ (upper bound)

Hirschowitz (1985):

correct, unless (d, k) = (2, 2) or (d, k) = (4, 5) (1 instead of 0)

D (2006): new proof using tropical geometry, paper and scissors

Alexander and Hirschowitz (1995): more variables

Also doable tropically??

Brannetti (2007, student of Ciliberto): three variables, tropically.

Tropical geometry

Set-up:

K field

```
v:K \to \overline{\mathbb{R}}:=\mathbb{R} \cup \{\infty\} non–Archimedean valuation, that is, v^{-1}(\infty)=\{0\}, v(ab)=v(a)\odot v(b), and v(a+b)\geq v(a)\oplus v(b) e.g. K =Laurent series and v=multiplicity of 0 as a zero technical conditions on (K,v)
```

```
X \subseteq K^n closed subvariety \leadsto \mathcal{T}X := \{v(x) = (v(x_1), \dots, v(x_n)) \mid x \in X\} tropicalisation of X
```

depends on coordinates!

Codimension one varieties

$$X$$
 zero set of one polynomial $f = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} x^{\alpha}$
 $\mathcal{T}f(\xi) := \min_{\alpha \in \mathbb{N}^n} (v(c_{\alpha}) + \langle \xi, \alpha \rangle)$ tropicalisation of f

Theorem I (Einsiedler-Kapranov-Lind).

$$\mathcal{T}X = \{ \xi \in \overline{\mathbb{R}}^n \mid \mathcal{T}f \text{ not linear at } \xi \}$$

→ tropical hypersurfaces are polyhedral complexes!

Example:

$$f = x_1 + x_2 - 1$$
 (line)
 $Tf = \min\{\xi_1, \xi_2, 0\}$

Arbitrary codimension

I the ideal of $X \subseteq K^n$

Theorem 2 (EKL 2004, SS 2003, see also D 2006).

```
 \mathcal{T}X = \{ (v'(x_1), \dots, v'(x_n)) \mid v' : K[X] \to \overline{\mathbb{R}} \text{ ring valuation extending } v \} 
= \{ w \in \overline{\mathbb{R}}^n \mid \forall f \in I : \mathcal{T}f \text{ not linear at } w \}
```

Theorem 3 (Bogart–Jensen–Speyer–Sturmfels–Thomas (2005)).

 \exists finite subset of I for which previous theorem is true

- $\rightsquigarrow TX$ is a polyhedral complex

Theorem 4 (Bieri–Groves (1985), Sturmfels).

X irreducible of dimension $d \Rightarrow \dim TX = d$

Example: $\mathcal{T}\mathrm{SL}_n$ and $\mathcal{T}\mathrm{O}_n$

Codimension one:

 $TSL_n = \{A \in \overline{\mathbb{R}}^{n \times n} \mid \text{tdet } A \leq 0 \text{ and if } < 0 \text{ then attained at least twice} \}$ monoid under tropical matrix multiplication

Higher codimension:

$$O_n := \{ g \mid g^t g = I \}$$

$$\mathcal{T}O_n = ??$$

closed under tropical matrix multiplication? probably so tropical basis? not sufficient to tropicalise the n^2 defining equations

Proposition 5 (D-McAllister 2006). $\mathcal{T}O_n \supset \{$ semi-metrics (d_{ij}) on n points $\}$ (full-dimensional cone)

Corollary 6. "Composition" of metrics stays within an $\binom{n}{2}$ -dimensional complex!

Secant varieties

C a closed cone in a K-space V, $k \in \mathbb{N}$

$$kC := \overline{\{v_1 + \ldots + v_k \mid v_i \in C\}},$$

the k-th secant variety of C

Main reference: Zak, Tangents and secants of algebraic varieties, 1993.

Example 7.

- $C_1 = \text{rank} \le 1$ matrices in $V_1 = M_m$ $kC_1 = \text{rank} \le k$ matrices
- $C_2 = \{z_1 \land z_2\} \subseteq V_2 := \bigwedge^2 K^m$ cone over Grassmannian of 2-spaces in K^m $kC_2 =$ skew-symmetric matrices of rank $\leq 2k$
- C_3 = cone over Grassmannian of *isotropic* 2-spaces in K^m $2C_3$ and $3C_3$ are complicated $kC_3 = kC_2$ for $k \ge 4$ (Baur and Draisma, 2004)

Non-defectiveness

Note: $\dim kC \leq \min\{k \dim C, \dim V\}$, the expected dimension.

Definition 8.

kC is non-defective if $\dim kC$ is as expected.

C is non-defective if all kC are.

Many *C*s are non-defective, but hard to prove so!

Minimal orbits: interesting cones

V irrep of complex algebraic group G $v \in V$ highest weight vector $C := Gv \cup \{0\} \subseteq V$

all examples so far were of this form dimensions of kC, $k=1,2,\ldots$ largely unknown! (except $V=S^d(\mathbb{C}^n)$ for $G=\operatorname{GL}_n$ —Alexander & Hirschowitz (1995))

widely open: tensor products, Grassmannians, etc.

Tropical strategy for proving kC non-defective

Recall:

algebraic geometry		tropical geometry
embedded affine variety $X\subseteq K^n$	\longrightarrow	polyhedral complex $\mathcal{T}(X)\subseteq\overline{\mathbb{R}}^n$
polynomial map f	\longrightarrow	piecewise linear map $\mathcal{T}(f)$
$\dim X$	=	$\dim \mathcal{T}(X)$

Strategy: prove $\dim \mathcal{T}(kC) = k \dim C$; then kC is non-defective. But kC not known, let alone $\mathcal{T}(kC)$! Proposal:

- parameterise $h: K^m \to C \subseteq V$
- tropicalise $f: (K^m)^k \to kC, \ (z_1, \dots, z_k) \mapsto h(z_1) + \dots + h(z_k)$
- compute $\operatorname{rk} dT(f)$ at a good point \leadsto lower bound on $\dim TkC$

A (simplified) theorem

$$h = (h_1, \dots, h_n) : K^m \to C \subseteq K^n$$
 parameterisation assume each $h_b = c_b x^{\alpha_b} \neq 0$ (I term)

for
$$l = (l_1, ..., l_k)$$
 k affine-linear functions on \mathbb{R}^m set $C_i(l) := \{\alpha_b | l_i(\alpha) < l_j(\alpha) \text{ for all } j \neq i\}$

Theorem 9 (Draisma, 2006).

 $\dim kC \ge \sum_{i} (1 + \dim \operatorname{Aff}_{\mathbb{R}} C_{i}(l))$

Funny optimisation problem

```
A\subseteq\mathbb{R}^n finite, k\in\mathbb{N}

Maximise \sum_i (1+\dim\operatorname{Aff}_\mathbb{R} C_i(l))=:*

over all l=(l_1,\ldots,l_k), each l_i affine-linear
```

Corollary 10.

```
A = \{\alpha_b \mid b\} exponents of monomials in parameterisation draw A on m-dimensional paper cut paper into k pieces compute sg. like * \leadsto lower bound on \dim kC
```


Example from beginning:

C =Veronese cone

 $h: (x_1, x_2, x_3) \mapsto (x_1e_1 + x_2e_2 + x_3e_3)^d \in S^d(\mathbb{C}^3)$

satisfies conditions of theorem \leadsto paper-and-scissors lower bound

Generalisation to higher dimensions?

Some results (with Karin Baur)

Non-degenerate:

- I. all Segre-Veronese embeddings of $\mathbb{P}^1 \times \mathbb{P}^1$ except (even, 2)
- 2. all Segre-Veronese embeddings of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ except (even, 1, 1)
- 3. Segre embedding of $(\mathbb{P}^1)^6$ (cells for k=9: 8 disjoint Hamming balls of radius 1 and one cell in the middle)
- 4. {flags point \subseteq line \subseteq \mathbb{P}^2 } probably all non-defective except those of highest weight $\omega_1 + \omega_2$ (adjoint representation) or $2\omega_1 + 2\omega_2$ needs generalisation of Theorem 9

Almost done: $\mathbb{P}^1 \times \mathbb{P}^2$

Conjecture 11. The lower bound always gives correct dimension for Segre-Veronese embeddings.

Some pictures

picture suggests: S-V embedding of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ of degree (2,2,2) has defective 7C. Indeed!

Minimal orbit in representation of SL_3 of highest weight (5, 1) is non-defective.

Conclusions

Non-defectiveness often provable by optimising a strange polyhedralcombinatoric objective function

Hope a point in T(kC) with full-dimensional neighbourhood gives restrictions on the ideal of kC. Sufficient to settle one or two more cases of GSS?

Segre-Veronese is the given bound always correct?

Other minimal orbits Smallest flag variety has non-monomial parameterisation, but doable with a trick. In general: which parameterisation to use? (Littelmann-Bernstein-Zelevinsky polytopes?)

Tropical geometry is a powerful tool! (and interesting in its own right..)