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A tropical approach to secant varieties
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Prototypical example: polynomial interpolation

Set–up:
d ∈ N
p1, . . . , pk general points in C2

codim{f ∈ C[x, y]≤d | ∀i : f (pi) = fx(pi) = fy(pi) = 0} =??
expect: min{3k,

(
d+2
2

)
} (upper bound)

Hirschowitz (1985):
correct, unless (d, k) = (2, 2) or (d, k) = (4, 5) (dim 1 instead of 0)

D (2006): new proof using tropical geometry, paper and sciccors

Alexander and Hirschowitz (1995): more variables
Also doable tropically??

Brannetti (2007, student of Ciliberto): three variables, tropically
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Secant varieties

C a closed cone in a K-space V , k ∈ N
kC := {v1 + . . . + vk | vi ∈ C},
the k-th secant variety of C
Main reference: Zak, Tangents and secants of algebraic varieties, 1993.

Example 1.

• C1 = rank≤ 1 matrices in V1 = Mm

kC1 = rank≤ k matrices

• C2 = {z1 ∧ z2} ⊆ V2 :=
∧2

Km

cone over Grassmannian of 2-spaces in Km

kC2 = skew-symmetric matrices of rank≤ 2k

• C3 = cone over Grassmannian of isotropic 2-spaces in Km

2C3 and 3C3 are complicated
kC3 = kC2 for k ≥ 4 (Baur and Draisma, 2004)



JJ J N I II 4/20JJ J N I II 4/20

Non-defectiveness

Note: dim kC ≤ min{k dim C, dim V }, the expected dimension.

Definition 2.
kC is non-defective if dim kC is as expected.
C is non-defective if all kC are.

Many Cs are non-defective, but hard to prove so!

Secant dimensions known for:

• Veronese embeddings (Alexander-Hirschowitz)

• certain Grassmannians and certain Segre(-Veronese) embeddings
(Catalisano, Geramita, Gimigliano)

• certain highest-weight orbits (Baur, Draisma, de Graaf)
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Goal of this talk

Combinatorial lower bound for dim kC where

C = {vd1
1 ⊗ vd2

2 ⊗ . . .⊗ vdp
p | vi ∈ Cni} ⊆ Sd1(Cn1)⊗ . . .⊗ Sdp(Cnp)

(Segre-Veronese embeddings)

Conjecture 3. This lower bound is always sharp.

Lots of evidence!

Example 4.
S2(C2)⊗ S2(C2)⊗ S2(C2):

(dim kC)k

= (4, 8, 12, 16, 20, 24, 26, 27)
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Aside: relation to polynomial interpolalation

V = Km

C := {vd} ⊆ SdV
dim kC =?

Lemma 5 (Terracini, 1911). For v1, . . . , vk ∈ V generic
dim kC = dim Tvd

1
C + . . . + dim Tvd

k
C .

Lasker, 1904:
Tvd

i
C = {f ∈ Sd(V ∗) | f is singular in [vi] ∈ PV }0

so
dim kC = codim {hom. pols. of degree d singular in all [vi] }.
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Tropical geometry: main definition

Set–up:
v : K → R := R ∪ {∞} non–Archimedean valuation

(v−1(∞) = {0}, v(ab) = v(a) + v(b), and v(a + b) ≥ min{v(a), v(b)}
think K =Laurent series over C in t)

technical conditions on (K, v)

X ⊆ Kn closed subvariety
 T X := {v(x) = (v(x1), . . . , v(xn)) | x ∈ X}
tropicalisation of X

depends on coordinates!
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Codimension one

X zero set of one polynomial f =
∑

α∈Nn cαx
α

T f (ξ) := minα∈Nn(v(cα) + 〈ξ, α〉) tropicalisation of f

Theorem 6 (Einsiedler–Kapranov–Lind).
T X = {ξ ∈ Rn | T f not linear at ξ}
 tropical hypersurfaces are polyhedral complexes!

Example:
f = x1 + x2 − 1 (line)
T f = min{ξ1, ξ2, 0}

v’(x+1)

v’(x)
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Plane Curves: conics



JJ J N I II 10/20JJ J N I II 10/20

Plane Curves: a cubic
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Aside: counting plane curves

Proposition 7. ∃ characterisation of tropical curves of degree d in the plane.

Mikhalkin (re)computed the number of classical degree d, genus g
plane curves through 3d + g − 1 general points:
count tropical such curves, each with a certain multiplicity.

Caporaso–Harris in 1998 needed havier algebraic geometry!

algorithms for enumerating such tropical curves
(Mikhalkin, Gathmann–Markwig)



JJ J N I II 12/20JJ J N I II 12/20

Higher codimension

I the ideal of X ⊆ Kn

Theorem 8 (EKL 2004, SS 2003, see also D 2006).

T X = {(v′(x1), . . . , v
′(xn)) | v′ : K[X ] → R ring valuation extending v}

= {w ∈ Rn | ∀f ∈ I : T f not linear at w}

Theorem 9 (Bogart–Jensen–Speyer–Sturmfels–Thomas (2005)).
∃ finite subset of I for which previous theorem is true

 tropical basis (hard to compute!)
 T X is a polyhedral complex

Theorem 10 (Bieri–Groves (1985), Sturmfels).

X irreducible of dimension d⇒ dim T X = d
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Tropical lower bounds on dim kC

algebraic geometry tropical geometry
embedded affine variety X ⊆ Kn → polyhedral complex T (X) ⊆ Rn

polynomial map f → piecewise linear map T (f )
dim X = dim T (X)

Strategy: prove dim T (kC) = k dim C ; then kC is non–defective.
But kC not known, let alone T (kC)!
Proposal:

• parameterise h : Km → C ⊆ V

• tropicalise f : (Km)k → kC, (z1, . . . , zk) 7→ h(z1) + . . . + h(zk)

• compute rk dT (f ) at a good point lower bound on dim T kC
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A (simplified) theorem

h = (h1, . . . , hn) : Km → C ⊆ Kn parameterisation
assume each hb = cbx

αb 6= 0 (1 term)

for l = (l1, . . . , lk) k affine–linear functions on Rm set
Ci(l) := {αb|li(αb) < lj(αb) for all j 6= i}

Theorem 11 (Draisma, 2006).
dim kC ≥

∑
i(1 + dim AffR Ci(l))

l  < l  , l
2 1 3

l  < l  , l
3 1 2

l  < l  , l
1 2 3

αb

Lower bound=3+2+1
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Funny optimisation problem

A ⊆ Rn finite, k ∈ N
Maximise

∑
i(1 + dim AffR Ci(l))=:*

over all l = (l1, . . . , lk), each li affine–linear

Corollary 12.
A = {αb | b} exponents of monomials in parameterisation
draw A on m–dimensional paper
cut paper into k pieces
compute sg. like ∗
 lower bound on dim kC
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Generalisation of Theorem 11

Optimisation problem:
Given
k ∈ N
A = (A1, . . . , An) list of finite subsets of Rn

Optimisation domain
k-tuples l = (l1, . . . , lk) of affine linear functions on Rn

Objective function∑k
i=1(1 + dim AffR Ci(l))

whereCi =
⋃n

b=1{α ∈ Ab | fi(α) < fj(β) for all (β, j) ∈ Ab×{1, . . . , k}}
Optimal value AP∗(A, k)

Theorem 13. h = (h1, . . . , hn) : Km → C ⊆ Kn parametrisation
Ab ⊆ Nm support of hb

then AP∗(A, k) ≤ dim kC
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Results with Karin Baur

Non–degenerate:

• all Segre–Veronese embeddings of P1 × P1 except (even, 2)
(Catalisano-Geramita-Gimigliano)

• all Segre–Veronese embeddings of P1 × P1 × P1 except (even, 1, 1)
(Catalisano-Geramita-Gimigliano)

• Segre embedding of (P1)6 (cells for k = 9: 8 disjoint Hamming balls of
radius 1 and one cell in the middle)

• {flags point ⊆ line ⊆ P2} non–defective in all embeddings except those
of highest weight ω1 + ω2 (adjoint representation) or 2ω1 + 2ω2

• all Segre–Veronese embeddings of P1 × P2 except (2, even) and (3, 1)
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Rationale

Results by others:

• Veronese embeddings of P3 (Brannetti)

• Segre embeddings of (P1)d for d = 1, . . . , 9
(Halupczok, tropically with computer)

Conjecture: tropical lower bound sharp for all Segre-Veronese embeddings.



JJ J N I II 19/20JJ J N I II 19/20

Some pictures

picture suggests: S-V embedding of P1×P1×
P1 of degree (2, 2, 2) has defective 7C . In-
deed!

Minimal orbit in rep-
resentation of SL3 of
highest weight (5, 1) is
non-defective.



JJ J N I II 20/20JJ J N I II 20/20

Conclusion

Non-defectiveness often provable by optimising a strange polyhedral-
combinatoric objective function

Hope a point in T (kC) with full-dimensional neighbourhood gives restric-
tions on the ideal of kC . Sufficient to settle one or two more cases of
GSS?

Segre-Veronese is the given bound always correct?

Other minimal orbits Smallest flag variety doable with a trick: reduce all Ab

in Theorem 13 to singletons, and use Voronoi-variant. In general: which
parametrisation to use? (Littelmann-Bernstein-Zelevinsky polytopes?)


