

A tropical approach to secant varieties

Jan Draisma

Luminy, 6 December 2006

A vignette

$$C = \text{Cone over Segre}(\text{Veronese}_2(\mathbb{P}^1) \times \text{Veronese}_2(\mathbb{P}^1) \times \text{Veronese}_2(\mathbb{P}^1))$$

$$kC = \overline{\{p_1 + \ldots + p_k \mid p_i \in C\}}$$

$$\dim kC = (\geq)4, 8, 12, 16, 20, 24, 26, 27$$

TU/e technische A jigsaw puzzle

Solutions for $d = 2, \dots, 6$

A not so puzzling result

Theorem 1. *d is non-defective* unless

- d = 2 (only 1 triangle fits), or
- d = 4 (only 4 triangles fit).

Proof by induction.

Polynomial interpolation

Given: k generic points $p_1, \ldots, p_k \in \mathbb{P}^2$ and $d \in \mathbb{N}$.

Theorem 2 (Hirschowitz, 1985).

 $\dim\{\text{ homogeneous polynomials of degree }d$ having singularities at all $p_i\}=$

 $\max\{0, \binom{d+2}{2} - 3k\}$ unless

- (d, k) = (2, 2): dimension = 1, or
- (d, k) = (4, 5): dimension = 1.

Proof by induction with the *Horace method*.

A tautology?

Theorem 3. Theorem $1 \Rightarrow$ Theorem 2

Proof: tropical geometry!

Secant varieties

C a closed cone in a K-space V, $k \in \mathbb{N}$

$$kC := \overline{\{v_1 + \ldots + v_k \mid v_i \in C\}},$$

the k-th secant variety of C

Main reference: Zak, Tangents and secants of algebraic varieties, 1993.

Example 4.

- $C_1 = \text{rank} \le 1$ matrices in $V_1 = M_m$ $kC_1 = \text{rank} \le k$ matrices
- $C_2 = \{z_1 \land z_2\} \subseteq V_2 := \bigwedge^2 K^m$ cone over Grassmannian of 2-spaces in K^m $kC_2 =$ skew-symmetric matrices of rank $\leq 2k$
- C_3 = cone over Grassmannian of *isotropic* 2-spaces in K^m $2C_3$ and $3C_3$ are complicated $kC_3 = kC_2$ for $k \ge 4$ (Baur and Draisma, 2004)

Non-defectiveness

Note: $\dim kC \leq \min\{k \dim C, \dim V\}$, the expected dimension.

Definition 5.

kC is non-defective if dim kC is as expected.

C is non-defective if all kC are.

Many *C*s are non-defective, but hard to prove so!

Relation to polynomial interpolalation

$$V = K^m$$

$$C := \{v^d\} \subseteq S^d V$$

$$\dim kC =?$$

Lemma 6 (Terracini, 1911). For $v_1, \ldots, v_k \in V$ generic $\dim kC = \dim T_{v_i^d}C + \ldots + \dim T_{v_i^d}C$.

Lasker, 1904:

$$T_{v_i^d}C = \{f \in S^d(V^*) \mid f \text{ is singular in } [v_i] \in \mathbb{P}V\}^0$$
 so $\dim kC = \operatorname{codim} \{\text{hom. pols. of degree } d \text{ singular in all } [v_i] \}.$

Alexander and Hirschowitz, 1995: $\dim kC$ for all k, d, m. Secant dimensions of other classes of cones (e.g., Segre products and Grassmannians) still unknown!

Algebraic and tropical geometry

A rough guide:

algebraic geometry		tropical geometry
embedded affine variety $X \subseteq K^n$	\longrightarrow	polyhedral complex $T(X) \subseteq \overline{\mathbb{R}}^n$
polynomial map f	\longrightarrow	piecewise linear map $T(f)$
$\dim X$	=	$\dim T(X)$

Strategy: $\dim T(kC) = k \dim C \Rightarrow kC$ is non-defective.

But kC is not known! Solution:

- parametrise $h: K^m \to C \subseteq V$
- tropicalise $f: (K^m)^k \to kC, (z_1, \ldots, z_k) \mapsto h(z_1) + \ldots + h(z_k)$
- compute $\operatorname{rk} dT(f)$ at a good point

A simplified theorem

 $h=(h_1,\ldots,h_n): K^m o C \subseteq K^n$ parametrisation

Assume: each $h_b = c_b x^{\alpha_b} \neq 0$ (1 term).

Choose a 2-norm on \mathbb{R}^m .

For $v = (v_1, \dots, v_k) \in (\mathbb{R}^m)^k$ set $\operatorname{Vor}_i(v) := \{\alpha_b \text{ in Voronoi cell of } v_i\}$.

Theorem 7 (Draisma, 2006). $\sum_{i} (1 + \dim \operatorname{Aff}_{\mathbb{R}} \operatorname{Vor}_{i}(v)) \leq \dim kC$.

Finally, a proof!

Proof of Theorem 3.

C = Veronese cone

$$h: (x_1, x_2, x_3) \mapsto (x_1e_1 + x_2e_2 + x_3e_3)^d \in S^d(K^3)$$

Combine theorem 7 and the jigsaw puzzle.

Generalisation to higher dimensions?

Tropical geometry

K a field with non-archimedean valuation $v:K\to\overline{\mathbb{R}}=\mathbb{R}\cup\{\infty\}$ X affine variety over K

 $\bar{x} := (\bar{x}_1, \dots, \bar{x}_n)$ generators of K[X]

Definition 8 (Tropicalisation of a variety).

$$T_{\bar{x}}(X) := \{ (v'(\bar{x}_1), \dots, v'(\bar{x}_n)) \mid$$

 $v':K[X]\to\mathbb{R}$ valuation extending v}

Depends on generators/embedding!

Example 9.

$$X = \mathbb{A}^1, K[X] = K[x],$$

$$\bar{x}_1 = x, \; \bar{x}_2 = x + 1$$

More concretely

L/K algebraically closed, complete extension with $v(L)=\overline{\mathbb{R}}$ I ideal of X in $K[x] = K[x_1, \ldots, x_n]$ For $w \in \overline{\mathbb{R}}^b$, $P = \sum_{\alpha} c_{\alpha} x^{\alpha} \in K[x]$:

 $\operatorname{wt}_w P := \min_{\alpha} v(c_{\alpha}) + w \cdot \alpha$

 $in_w P := terms of minimal weight$

Theorem 10 (Einsiedler-Kapranov-Lind, Speyer-Sturmfels, see also D.). The following are equal:

- $\bullet v(X(L))$
- $\bullet T_{\bar{x}}(X)$
- $\{w \in \overline{\mathbb{R}}^n \mid \text{in}_w f \text{ is not monomial for any } f \in I\}$

Theorem 11 (Bieri-Groves, Sturmfels). $T_{\bar{x}}(X)$ is a polyhedral complex, pure of dimension $\dim X$ if X is irreducible.

Definition 12 (Tropicalisation of polynomials).

$$T(P)(w) := \operatorname{wt}_w P$$

$$T(h_1, \dots, h_b) := (T(h_1), \dots, T(h_b))$$

Example 13.

$$P = cx_1^2 + x_2$$

$$T(P) = \min\{c + 2w_1, w_2\}$$

Lemma 14. Given $h: K^m \to C$

and
$$f(z_1,\ldots,z_k):=h(z_1)+\ldots+h(z_k)$$
, $T(f)$ maps $(\mathbb{R}^m)^k$ into $T(kC)$.

Find a point where

- T(f) is linear and
- dT(f) has maximal rank.

This leads to Theorem 7.

Generalisation of Theorem 7

Optimisation problem:

Given

$$k \in \mathbb{N}$$

$$A = (A_1, \ldots, A_n)$$
 list of finite subsets of \mathbb{R}^n

Optimisation domain

k-tuples $l=(l_1,\ldots,l_k)$ of affine linear functions on \mathbb{R}^n

Objective function

$$\sum_{i=1}^{k} (1 + \dim \operatorname{Aff}_{\mathbb{R}} C_i(l))$$

where
$$C_i = \bigcup_{b=1}^n \{ \alpha \in A_b \mid f_i(\alpha) < f_j(\beta) \text{ for all } (\beta, j) \in A_b \times \{1, \dots, k\} \}$$

Optimal value $AP^*(A, k)$

Theorem 15.
$$h=(h_1,\ldots,h_n):K^m\to C\subseteq K^n$$
 parametrisation $A_b\subseteq\mathbb{N}^m$ support of h_b then $\operatorname{AP}^*(A,k)\leq\dim kC$

Some results (with Karin Baur)

Non-degenerate:

- I. all Segre-Veronese embeddings of $\mathbb{P}^1 \times \mathbb{P}^1$ except (even, 2)
- 2. all Segre-Veronese embeddings of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ except (even, 1, 1)
- 3. Segre embedding of $(\mathbb{P}^1)^6$ (cells for k=9: 8 disjoint Hamming balls of radius 1 and one cell in the middle)

Almost done:

- I. $\mathbb{P}^1 \times \mathbb{P}^2$
- 2. {flags point \subseteq line \subseteq \mathbb{P}^2 } probably all non-defective except those of highest weight $\omega_1 + \omega_2$ (adjoint representation) or $2\omega_1 + 2\omega_2$ needs Theorem 15 rather than 7

Bold conjecture: the lower bound is always correct for Segre-Veronese embeddings.

Some pictures

picture suggests: S-V embedding of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ of degree (2,2,2) has defective 7C. Indeed!

Minimal orbit in representation of SL_3 of highest weight (5, 1) is non-defective.

Conclusion

Non-defectiveness often provable by optimising a strange polyhedralcombinatoric objective function

Hope a point in T(kC) with full-dimensional neighbourhood gives restrictions on the ideal of kC. Sufficient to settle one or two more cases of GSS?

Segre-Veronese is the given bound always correct?

Other minimal orbits Smallest flag variety doable with a trick: reduce all A_b in Theorem 15 to singletons, and use Voronoi-variant. In general: which parametrisation to use? (Littelmann-Bernstein-Zelevinsky polytopes?)

Reading

- ullet Catalisano-Geramita-Gimigliano: some secant dimensions of Grassmannians, non-defectiveness of most $k(\mathbb{P}^1)^d$, defectiveness of some unbalanced Segre products and Segre-Veronese products.
- Sturmfels-Sullivant, Miranda-Dumitrescu, 200*: degeneration approach for secant dimensions
- Landsberg-Weyman, 2006: *equations* for certain secant varieties of Segre products (GSS conjectures!)
- Baur-Draisma-de Graaf, 2006: GAP-program for computing secant dimensions of *minimal orbits*
- Draisma, 2006:
 A tropical approach to secant dimensions math.AG/0605345 (includes intro to tropical geometry!)

Hope this was not too non-linear