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A tropical approach to secant varieties
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A vignette

C = Cone over Segre(Veronese2(P1)× Veronese2(P1)× Veronese2(P1))

kC = {p1 + . . . + pk | pi ∈ C}
dim kC = (≥)4, 8, 12, 16, 20, 24, 26, 27
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A jigsaw puzzle

d = 3
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Solutions for d = 2, . . . , 6
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A not so puzzling result

Theorem 1. d is non-defective unless

• d = 2 (only 1 triangle fits), or

• d = 4 (only 4 triangles fit).

Proof by induction.
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Polynomial interpolation

Given: k generic points p1, . . . , pk ∈ P2 and d ∈ N.

Theorem 2 (Hirschowitz, 1985).
dim{ homogeneous polynomials of degree d
having singularities at all pi } =
max{0,

(
d+2
2

)
− 3k)} unless

• (d, k) = (2, 2): dimension = 1, or

• (d, k) = (4, 5): dimension = 1.

Proof by induction with theHorace method.
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A tautology?

Theorem 3. Theorem 1⇒ Theorem 2

Proof: tropical geometry!
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Secant varieties

C a closed cone in a K-space V , k ∈ N
kC := {v1 + . . . + vk | vi ∈ C},
the k-th secant variety of C
Main reference: Zak, Tangents and secants of algebraic varieties, 1993.

Example 4.

• C1 = rank≤ 1 matrices in V1 = Mm

kC1 = rank≤ k matrices

• C2 = {z1 ∧ z2} ⊆ V2 :=
∧2

Km

cone over Grassmannian of 2-spaces in Km

kC2 = skew-symmetric matrices of rank≤ 2k

• C3 = cone over Grassmannian of isotropic 2-spaces in Km

2C3 and 3C3 are complicated
kC3 = kC2 for k ≥ 4 (Baur and Draisma, 2004)
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Non-defectiveness

Note: dim kC ≤ min{k dim C, dim V }, the expected dimension.

Definition 5.
kC is non-defective if dim kC is as expected.
C is non-defective if all kC are.

Many Cs are non-defective, but hard to prove so!
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Relation to polynomial interpolalation

V = Km

C := {vd} ⊆ SdV
dim kC =?

Lemma 6 (Terracini, 1911). For v1, . . . , vk ∈ V generic
dim kC = dim Tvd

1
C + . . . + dim Tvd

k
C .

Lasker, 1904:
Tvd

i
C = {f ∈ Sd(V ∗) | f is singular in [vi] ∈ PV }0

so
dim kC = codim {hom. pols. of degree d singular in all [vi] }.

Alexander and Hirschowitz, 1995: dim kC for all k, d, m.
Secant dimensions of other classes of cones (e.g., Segre products and
Grassmannians) still unknown!
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Algebraic and tropical geometry

A rough guide:

algebraic geometry tropical geometry
embedded affine variety X ⊆ Kn → polyhedral complex T (X) ⊆ Rn

polynomial map f → piecewise linear map T (f )
dim X = dim T (X)

Strategy: dim T (kC) = k dim C ⇒ kC is non-defective.

But kC is not known! Solution:

• parametrise h : Km → C ⊆ V

• tropicalise f : (Km)k → kC, (z1, . . . , zk) 7→ h(z1) + . . . + h(zk)

• compute rk dT (f ) at a good point
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A simplified theorem

h = (h1, . . . , hn) : Km → C ⊆ Kn parametrisation
Assume: each hb = cbx

αb 6= 0 (1 term).

Choose a 2-norm on Rm.
For v = (v1, . . . , vk) ∈ (Rm)k set Vori(v) := {αb in Voronoi cell of vi}.
Theorem 7 (Draisma, 2006).

∑
i(1 + dim AffR Vori(v)) ≤ dim kC .

vi

αb

Lower bound=2+1+1
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Finally, a proof!

Proof of Theorem 3.
C =Veronese cone
h : (x1, x2, x3) 7→ (x1e1 + x2e2 + x3e3)

d ∈ Sd(K3)
Combine theorem 7 and the jigsaw puzzle.

Generalisation to higher dimensions?
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Tropical geometry

K a field with non-archimedean valuation v : K → R = R ∪ {∞}
X affine variety over K
x̄ := (x̄1, . . . , x̄n) generators of K[X ]

v’(x+1)

v’(x)

Definition 8 (Tropicalisation of a variety).
Tx̄(X) := {(v′(x̄1), . . . , v

′(x̄n)) |
v′ : K[X ] → R valuation extending v}
Depends on generators/embedding!

Example 9.
X = A1, K[X ] = K[x],
x̄1 = x, x̄2 = x + 1
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More concretely

L/K algebraically closed, complete extension with v(L) = R
I ideal of X in K[x] = K[x1, . . . , xn]

For w ∈ Rb
, P =

∑
α cαx

α ∈ K[x]:
wtwP := minα v(cα) + w · α
inwP := terms of minimal weight

Theorem 10 (Einsiedler-Kapranov-Lind, Speyer-Sturmfels, see also D.).
The following are equal:

• v(X(L))

• Tx̄(X)

• {w ∈ Rn | inwf is not monomial for any f ∈ I}
Theorem 11 (Bieri-Groves,Sturmfels). Tx̄(X) is a polyhedral complex, pure of
dimension dim X if X is irreducible.
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Definition 12 (Tropicalisation of polynomials).
T (P )(w) := wtwP
T (h1, . . . , hb) := (T (h1), . . . , T (hb))

Example 13.
P = cx2

1 + x2
T (P ) = min{c + 2w1, w2}
Lemma 14. Given h : Km → C
and f (z1, . . . , zk) := h(z1) + . . . + h(zk),
T (f ) maps (Rm)k into T (kC).

Find a point where

• T (f ) is linear and

• dT (f ) has maximal rank.

This leads to Theorem 7.
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Generalisation of Theorem 7

Optimisation problem:
Given
k ∈ N
A = (A1, . . . , An) list of finite subsets of Rn

Optimisation domain
k-tuples l = (l1, . . . , lk) of affine linear functions on Rn

Objective function∑k
i=1(1 + dim AffR Ci(l))

whereCi =
⋃n

b=1{α ∈ Ab | fi(α) < fj(β) for all (β, j) ∈ Ab×{1, . . . , k}}
Optimal value AP∗(A, k)

Theorem 15. h = (h1, . . . , hn) : Km → C ⊆ Kn parametrisation
Ab ⊆ Nm support of hb

then AP∗(A, k) ≤ dim kC
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Some results (with Karin Baur)

Non-degenerate:

1. all Segre-Veronese embeddings of P1 × P1 except (even, 2)

2. all Segre-Veronese embeddings of P1 × P1 × P1 except (even, 1, 1)

3. Segre embedding of (P1)6 (cells for k = 9: 8 disjoint Hamming balls of
radius 1 and one cell in the middle)

Almost done:

1. P1 × P2

2. {flags point ⊆ line ⊆ P2} probably all non-defective except those of
highest weight ω1 + ω2 (adjoint representation) or 2ω1 + 2ω2
needs Theorem 15 rather than 7

Bold conjecture: the lower bound is always correct for Segre-Veronese em-
beddings.
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Some pictures

picture suggests: S-V embedding of P1×P1×
P1 of degree (2, 2, 2) has defective 7C . In-
deed!

Minimal orbit in rep-
resentation of SL3 of
highest weight (5, 1) is
non-defective.
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Conclusion

Non-defectiveness often provable by optimising a strange polyhedral-
combinatoric objective function

Hope a point in T (kC) with full-dimensional neighbourhood gives restric-
tions on the ideal of kC . Sufficient to settle one or two more cases of
GSS?

Segre-Veronese is the given bound always correct?

Other minimal orbits Smallest flag variety doable with a trick: reduce all Ab

in Theorem 15 to singletons, and use Voronoi-variant. In general: which
parametrisation to use? (Littelmann-Bernstein-Zelevinsky polytopes?)
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Reading

• Catalisano-Geramita-Gimigliano:
some secant dimensions of Grassmannians, non-defectiveness of most
k(P1)d, defectiveness of some unbalanced Segre products and Segre-
Veronese products.

• Sturmfels-Sullivant, Miranda-Dumitrescu, 200*:
degeneration approach for secant dimensions

• Landsberg-Weyman, 2006:
equations for certain secant varieties of Segre products (GSS conjec-
tures!)

• Baur-Draisma-de Graaf, 2006:
GAP-program for computing secant dimensions of minimal orbits

• Draisma, 2006:
A tropical approach to secant dimensions math.AG/0605345 (in-
cludes intro to tropical geometry!)
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Hope this was not too non-linear


