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A scenic tour in tropical geometry
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Tropical Semiring

R := R ∪ {∞}
a⊕ b := min{a, b}
a� b := a + b

∞⊕ b = b
0� b = b
a� (b⊕ c) = (a� b)⊕ (a� c)
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Getting used: tropical matrix multiplication

A = (aij)ij, B = (bij)ij ∈ Rn×n

(A�B)ij := mink(aik + bkj)

Application:
points 1, . . . , n
aij =distance from j to i
 (A�k)ij shortest length of a k–step path from j to i
if all aij ≥ 0 and aii = 0 then A�n records all shortest path lengths
 repeated squaring gives algorithm
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Tropical polynomials

I ⊆ Nn

bα ∈ R for α ∈ I
f : Rn → R,
ξ 7→

⊕
α∈I bα �

⊙n
i=1 ξ�αi

i = minα∈I bα + 〈ξ, α〉 tropical polynomial

Example
A ∈ Rn×n

tdet(A) :=
⊕

π∈Sn
aπ(1),1 � aπ(2),2 � · · · � aπ(n),n tropical determinant

minimal weight matching in Kn,n with edge weights aij
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Tropical geometry

Set–up:
K field
v : K → R non–Archimedean valuation,
that is, v−1(∞) = {0}, v(ab) = v(a)� v(b), and v(a + b) ≥ v(a)⊕ v(b)
e.g. K =Laurent series and v=multiplicity of 0 as a zero
technical conditions on (K, v)

X ⊆ Kn given by polynomial equations
 T X := {v(x) = (v(x1), . . . , v(xn)) | x ∈ X}
tropicalisation of X

depends on coordinates!
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Codimension one varieties

X zero set of one polynomial f =
∑

α∈Nn cαx
α

T f (ξ) := minα∈Nn(v(cα) + 〈ξ, α〉) tropicalisation of f

Theorem 1 (Einsiedler–Kapranov–Lind).
T X = {ξ ∈ Rn | T f not linear at ξ}
 tropical hypersurfaces are polyhedral complexes!

Example:
f = x1 + x2 − 1 (line)
T f = min{ξ1, ξ2, 0} (0,0)

2v(x )

1v(x )



12

/ department of mathematics and computer scienceJJ J N I II 7/13JJ J N I II 7/13

Plane Curves: conics
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Plane Curves: a cubic
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Plane curves: counting

Proposition 2. characterisation of tropical curves of degree d in the plane:

1. plane graph, straight edges with multiplicities and rational slopes

2. balancing condition at vertices

3. d infinite tentacles in each direction (−1, 0), (0, 1), (1, 1)

Mikhalkin (re)computed the number of classical degree d, genus g
plane curves through 3d + g − 1 general points:
count tropical such curves, each with a certain multiplicity.

Caporaso–Harris in 1998 needed havier algebraic geometry!

algorithms for enumerating such tropical curves
(Mikhalkin, Gathmann–Markwig)
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Arbitrary codimension

I the ideal of X ⊆ Kn

Theorem 3 (EKL 2004, SS 2003, see also D 2006).

T X = {w ∈ Rn | ∀f ∈ I : T f not linear at w}

Theorem 4 (Bogart–Jensen–Speyer–Sturmfels–Thomas (2005)).
∃ finite subset of I for which previous theorem is true

 tropical basis (hard to compute!)
 T X is a polyhedral complex

Theorem 5 (Bieri–Groves (1985), Sturmfels).
X irreducible of dimension d⇒ dim T X = d
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Application: polynomial interpolation in two
variables

Set–up:
d ∈ N
p1, . . . , pk general points in C2

codim{f ∈ C[x, y]≤d | ∀i : f (pi) = fx(pi) = fy(pi) = 0} =??
expect: min{3k,

(
d+2
2

)
} (upper bound)

Hirschowitz (1985):
correct, unless (d, k) = (2, 2) or (d, k) = (4, 5) (1 instead of 0)

D (2006): new proof using tropical geometry, paper and scissors

Alexander and Hirschowitz: more variables (1995)
Also doable tropically??
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Some progress

1. Tropical Grassmannian of lines  space of phylogenetic trees (Speyer
and Sturmfels, 2003)

2. Tropical geometry of statistical models (Pachter, Sturmfels, 2004)

3. Tropical Pappus theorem (Tabera, 2003)

4. Tropical discriminants (Dickenstein, Feichtner, Sturmfels, 2005)

5. Tropical Bézout theorem (Richter–G./Sturmfels/Theobald, Gathmann)

6. Tropical relative Gromov–Witten invariants (Gathmann, Markwig)

7. The cone of n–point metrics is a cone in the tropical orthogonal group
(D (2006))

8. Secant dimensions of low–dimensional homogeneous varieties in high–
dimensional projective spaces (Baur–D, ongoing)

9. Polyhedral–combinatorial (paper and scissors) programs related to these
dimensions (D–Halupczok, ongoing)
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Lots of work left to be done!

Theory:

1. better proof for existence of tropical bases

2. gluing tropical variaties?

3. tropical morphisms?

4. relation to Berkovich theory

Applications/computations:

1. algorithms for computation of tropical bases

2. algorithms for enumerative tropical geometry

3. tropicalisations of algebraic groups

4. further applications to algebraic statistics and mathematical biology


