Hypersurtaces in PC testing
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. 3
Settlng W13
" a directed acyclic graph (DAG) on [m] 1 4 6
for i — j a weight w;; ~ path matrix M 2 -

Example: mig = wizwse + wiawae = Zpath piimj W(D)

Lemma: S,S’ C [m], |S| = |S/| w»
det M[S,S'] = Y rs—s sg() [Lies Miri
= Zpath system P:§S—S§’ SgIl(P)W(P) — Zvertex disjoint P:I—J SgIl(P)W(P)!

Example: S = {1,2},S’ = {6,7} ~ det(M[S,S’]) =

(W13W36)(WagWa7) + (W13Ww36)(Wasws7) + (W1aWae)(WosWs7);
the path systems intersecting at 4 cancel out!



A hypothetical DAG model

A}moking{‘

yellow teeth

tar 1n lun_gs

asbestos

i CElIlC@I'{

(Shalizi, 2018)




A hypothetical DAG model

smokin

e

yellow teeth

\,

tar in lungs

asbestos

i cancer[

(Shalizi, 2018)

Interpretation:

e arrows indicate causal relationships
e graph 1s directed, acyclic (DAG)

e graph implies CI statements such as:
yvellow teeth and tar in lungs are independent given smoking
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Directed Gaussian graphical models
G = ([n], D) a DAG, write i — jfor (i, j) € D
Xi,...,X,: jointly Gaussian random variables

Relations
X]’:Zi_)jal’le‘+Ej, ENN(O,diag(a)l,...,a)n):Q)

Parameter space
(a,w) € RP x R%,

Covariance matrix of X
I-A)'X=€s0X=U[-A)Tes0oX=UT-A)TQU-A)"!

Here a;; =01t i / j, so A 1s nilpotent and
I-A)'=T+A+A%>+.. .+ AL
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Trek expansion 6

T=U+AT+AY +-- -+ A" H.Q U+A+A* +---+ A" D
> X = Dlreks rims j W(), Where:

u down
Definition | V N

|
Atrekt:i— jisapair [(i =i, 01, ...50), (ks lksls---»0 = J)I,
(17K -1
W(t) .= (Hj:l aij,ij_1) * Wi e (Hj:k aij,ij+1)°

Theorem (Sullivant-Talaska-D)
LetS,S’” C [n] with |S| = |S’|. Then
detX[S,S'] = 2r.55 sgn(T)w(T),
where the sum 1s over trek systems

S — S’ without sided (red or blue)
intersections. Formula 1s cancellation-
free with coeflicients +2~*.

(Apply GVL to G — G.)

%
S/
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det2[134,234] = —(wia14)(w3)(a2aw>) — (wra13)(a3wr)(Wws)

detX[15,25] = —(w1a13a3s)(azsarzwr) — (w1a14a4s5)(azsazwr) —
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detX[134,345]1 =0



Example (Lin-Uhler-Sturmtels-Biihlmann) 7

det2[134,234] = —(wia14)(w3)(a2aw>) — (wra13)(a3wr)(Wws)

detX[15,25] = —(w1a13a3s)(azsarzwr) — (w1a14a4s5)(azsazwr) —
(w1a13a35)(As5a242) — (W1a14045)(A45024W2)

detX[134,345]1 =0

Corollary of S-T-D
det X[S, S’] is not identically zero on R? x RZ, if and only 1f there
exists a trek system 7' : § — S’ without sided intersection.
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Partial correlations g

Partial correlations: S C [n], iy, jo € [n] \ S

L det Z[S +ip,S +
~s> corr(ip, jolS) = AR e il
\/det Z[S +ip,S +ip] det Z[S +jo,S + o]

relation of iy, jo given S ; 1t 18 zero it X; , X;, indep. given (Xj)yes .-

1s the partial cor-
0°

(Consequence of the) Hammersley-Clifford Theorem
The model {2 | (a, w)} € R™" is uniquely determined by the partial
correlations that vanish identically on it.

Remark: Two distinct DAGs can yield the same model (Markov
equivalence); cannot be distinguished with observational data.
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Exercise 1: The following are equivalent:

1. detX[S +ip,S + jo] = O;

2. there exists Cyp, Cagown € [m] with |Cyp| + [Caownl| < [S|+ 1 such
that every trek from § +ip to S + jo passes through C,, on its way
up or through Cgyow, On its way down;

3. § d-separates iy from jy: every undirected path from iy to jj
either has a noncollider in § or else has a collider — ¢ < such
that ¢ and 1ts descendents do not belong to S . (Yangming D1)
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Exercise 1: The following are equivalent:

1. detX[S +ip,S + jo] = O;

2. there exists Cyp, Cagown € [m] with |Cyp| + [Caownl| < [S|+ 1 such
that every trek from § +ip to S + jo passes through C,, on its way
up or through Cgyow, On its way down;

3. § d-separates iy from jy: every undirected path from iy to jj
either has a noncollider in § or else has a collider — ¢ < such
that ¢ and 1ts descendents do not belong to S . (Yangming D1)

Exercise 2:_ if A 1s a square matrix, then detA[S,S’'] =
+det(A"H[S”,S] - det(A). (So subdeterminants of X are also sub-
determinants of the concentration matrix ¥='.)

Exercise 3: Fix iy, jo. If detX[S +ip, S + jo] = 0 for some S C [n]\
{i0, jo}, then this holds for some set S CPa(iy) or some S CPa( ).



Discovering the graph from X: PC algorithm 10

Start with undirected K,,; E := {all 2-subsets of [n]}.

Phase 1: edge removal
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of neighbours of iy or of jy with |S| = k compute corr(ig, jo|S ). If
zero, delete {ig, jo} from §.
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Discovering the graph from X: PC algorithm 10

Start with undirected K,,; E := {all 2-subsets of [n]}.

Phase 1: edge removal

Fork =0,...,n—2do: for {iy, jo} € Eand S C [n] \ {ip, jo} a set
of neighbours of iy or of jy with |S| = k compute corr(ig, jo|S ). If
zero, delete {ig, jo} from §.

Phase 2: orientation
Use partial correlations to try and orient the edges in E.

Theorem (Spirtes-Glymour-Scheines)
If X 1s faithful to a single DAG, then it 1s found. If it 1s faithful to
a single Markov equivalence class of DAGs, then that 1s found.

In practice, “if zero” is replaced by “if |corr| < A”.



(Non-)singularities 11

Geometry studied by Lin-Uhler-Sturmfels-Buhlmann:
Suppose true DAG G has ig — jo. Set f := detX[S + iy, S + jol.
The PC-test |corr(ip, jolS )| < A describes a neighbourhood Tube(A)
of the hypersurface in H; := {a | f = 0} C RP (they take Q = I).
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Geometry studied by Lin-Uhler-Sturmfels-Buhlmann:
Suppose true DAG G has ig — jo. Set f := detX[S + iy, S + jol.
The PC-test |corr(ip, jolS )| < A describes a neighbourhood Tube(A)
of the hypersurface in H; := {a | f = 0} C RP (they take Q = I).

Tube(A) is the region in parameter space where the PC-test would
delete {iy, jo} erroneously. If Hy is smooth, then Vol(Tube(A)) (rel-
ative to a fixed density on RP) is linear in A for A — 0. If not, it
may be superlinear.
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the Jacobian ideal ({f} U (=L |i — j}); e.g. 240 cases for n = 6.
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Theorem (Lin-Uhler-Sturmfels-Biihlman)
As 1 — 0, Vol(Tube(1)) ~ CA(—In )" ! for some C > 0 and
(€, m) the real log canonical threshold of f.

They computed (£, m) for many tuples (G, iy, jo,S ). In particular:

Theorem (L-U-S-B)
If G 1s a complete DAG on n < 6 vertices, then H¢ 1s smooth for
all choices of i, jo, S .

Proof method: find a power of det(X[S + iy + jo,S +ip + jo]) In
the Jacobian ideal ({f} U (=L |i — j}); e.g. 240 cases for n = 6.

Ly

Question (L-U-S-B)
Also forn > 67
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Theorem (D, arXiv: 1806.00320)

Let G be a DAG on [n], iy, jo € [n] distinct and S C [n] \ {ig, jo}
Assume that iy — jo and that iy — s for each s € § below jj.
Then H; := {a € RP | detZ[S + ip, S + jo] = 0} is smooth.
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Theorem (D, arXiv: 1806.00320)

Let G be a DAG on [n], iy, jo € [n] distinct and S C [n] \ {ig, jo}
Assume that iy — jo and that iy — s for each s € § below jj.
Then H; := {a € RP | detZ[S + ip, S + jo] = 0} is smooth.

Treat the a; ; as variables. Let J be the 1deal in Rla;; | i — J]
generated by the partial derivatives of f. Goal: Vr(J) = 0.

Lemma 1
The asj, s € S, j € [n],s — jdon’tappearin f, so w.lo.g. s /> J.

Lemma 2
For s € §,ip — s the variable a;, ; appears at most linearly in f,
with coeflicient + det 2X[S + ip, S + jo — s + ip]; so thisis 1n J.



New theorem 14

Lemma 3

The variable q;, j, appears at most linearly in f, with coethicient
(det2[S + 1o, S +io]l — &) where g = Yir.giijms+i, SEU(TIW(T),
the sum over 7', no sided intersections, passing jo on way down.
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Lemma 3

The variable q;, j, appears at most linearly in f, with coethicient
+(detX[S +1ip,S +ip] — g) where g = 1.5 s+, SEN(TIW(T),
the sum over 7', no sided intersections, passing jo on way down.

Let pj, s be the sum of all weights of paths from jj to s.

Lemma 4
g = Dises £detX[S +1p,S +ip— s+ jol - Pjo.s:

Proof of theorem: Modulo J we have
detX[S +ip,S +ip] = g = ZSES +2|S +19,5 +ip— 5+ jol *Dio,s-

This is in J by Lemma 2. Now use that for a € R?, 2[S +iy, S +io]
1s positive definite, hence has nonzero determinant. O



Discussion: a conjectured volume inequality 15

Setting

Let iy, jo,S’,S be disjoint and such that each element of S’ is a
descendant of iy and of jy, and each element of S 1s a descendant
of each element of S’. L-U-S-B conjecture, for A € [0, 1]:

Vol{a : |corr(iy, jo|S)| < A} = Vol{a : |corr(iy, jo|S)| < A}

Motivation
‘It is widely believed that collider-stratification bias tends to at-
tenuate when it arises from more extended paths.’

i = 1 o =2
S’ 3N4
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Discussion: a conjectured volume inequality

Setting

15

Let iy, jo,S’,S be disjoint and such that each element of S’ is a
descendant of iy and of jy, and each element of S 1s a descendant
of each element of S’. L-U-S-B conjecture, for A € [0, 1]:
Vol{a : |corr(iy, jo|S)| < A} = Vol{a : |corr(iy, jo|S)| < A}

Motivation

‘It is widely believed that collider-stratification bias tends to at-
tenuate when it arises from more extended paths.’

But taking

ay, = =34y, = —2,
Ay, = 8,a;, = 10, |
ays =2,a, 5 =0yields

2 1024 88
corr(1,2|5)” = 1189 ~ 105

Jo =2

io =1
S’ 3N

4

_ 2
= corr(1,2|3,4)". I @
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corr(1,2|5)% = %%g > % corr(1, 2|3, 4)?.

So concentrating the mass near this point a* and taking a suitable

88 1024
A € (/705> \/ T189)> We find

Vol{a : |corr(1,2]|5)| < A} < Vol{a : |corr(1, 2|3, 4)| < A}

io = 1 jo =2
S’ 3?44
S@
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2 _ 1024 88 2
corr(1,2|5)° = 1755 > 105 = corr(1, 23, 4)".

So concentrating the mass near this point a* and taking a suitable

A€ ( %, 1%4) we find

Vol{a : |corr(1,2]|5)| < A} < Vol{a : |corr(1, 2|3, 4)| < A}

i()zl j0:2
S’ 3%4

Interesting open problems:
e after fixing the density, true for small A7 5
e true at least for the real log canonical thresholds?

e more generally, can the rlct be computed directly from the
graph? (L-U-S-B solve this, e.g., for trees without colliders.)
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2 _ 1024 88 2
corr(1,2|5)° = 1755 > 105 = corr(1, 23, 4)".

So concentrating the mass near this point a* and taking a suitable

A€ ( %, 1%4) we find

Vol{a : |corr(1,2]|5)| < A} < Vol{a : |corr(1, 2|3, 4)| < A}

i()zl j0:2
S’ 3%4

Interesting open problems:
e after fixing the density, true for small A7 5
e true at least for the real log canonical thresholds?

e more generally, can the rlct be computed directly from the
graph? (L-U-S-B solve this, e.g., for trees without colliders.)

THANK YOU!
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