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path p:i→ j w(p)
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Lemma: S , S ′ ⊆ [m], |S | = |S ′| 
det M[S , S ′] =

∑
π:S→S ′ sgn(π)

∏
i∈S mi,π(i)

=
∑

path system P:S→S ′ sgn(P)w(P) =
∑

vertex disjoint P:I→J sgn(P)w(P)!

Example: S = {1, 2}, S ′ = {6, 7} det(M[S , S ′]) =

(w13w36)(w24w47) + (w13w36)(w25w57) + (w14w46)(w25w57);
the path systems intersecting at 4 cancel out!
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4A hypothetical DAG model

smoking

yellow teeth tar in lungs asbestos

cancer
(Shalizi, 2018)

Interpretation:
• arrows indicate causal relationships
• graph is directed, acyclic (DAG)
• graph implies CI statements such as:
yellow teeth and tar in lungs are independent given smoking
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G = ([n],D) a DAG, write i→ j for (i, j) ∈ D
X1, . . . , Xn: jointly Gaussian random variables

Relations
X j =

∑
i→ j ai jXi + ε j, ε ∼ N(0, diag(ω1, . . . , ωn) = Ω)
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G = ([n],D) a DAG, write i→ j for (i, j) ∈ D
X1, . . . , Xn: jointly Gaussian random variables

Relations
X j =

∑
i→ j ai jXi + ε j, ε ∼ N(0, diag(ω1, . . . , ωn) = Ω)

Parameter space
(a, ω) ∈ RD × Rn

>0

Covariance matrix of X
(I − A)T X = ε, so X = (I − A)−T ε, so Σ = (I − A)−T Ω(I − A)−1

Here ai j = 0 if i 6→ j, so A is nilpotent and
(I − A)−1 = I + A + A2 + · · · + An−1.



6Trek expansion

Σ = (I + AT + (AT )2 + · · · + (AT )n−1) ·Ω · (I + A + A2 + · · · + An−1)
 Σi j =

∑
treks t:i→ j w(t), where:

Definition
A trek t : i→ j is a pair [(i = i0, i1, . . . , ik), (ik, ik+1, . . . , il = j)],
w(t) :=

(∏k
j=1 ai j,i j−1

)
· ωik ·

(∏l−1
j=k ai j,i j+1

)
.
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Theorem (Sullivant-Talaska-D)
Let S , S ′ ⊆ [n] with |S | = |S ′|. Then
det Σ[S , S ′] =

∑
T :S→S ′ sgn(T )w(T ),

where the sum is over trek systems
S → S ′ without sided (red or blue)
intersections. Formula is cancellation-
free with coefficients ±2x.

S
S ′

(Apply GVL to Gop → G.)
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1 2

3 4

5

det Σ[134, 234] = −(ω1a14)(ω3)(a24ω2) − (ω1a13)(a23ω2)(ω4)

det Σ[15, 25] = −(ω1a13a35)(a35a23ω2) − (ω1a14a45)(a35a23ω2) −
(ω1a13a35)(a45a24ω2) − (ω1a14a45)(a45a24ω2)

det Σ[134, 345] ≡ 0

Corollary of S-T-D
det Σ[S , S ′] is not identically zero on RD ×Rn

>0 if and only if there
exists a trek system T : S → S ′ without sided intersection.
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Partial correlations: S ⊆ [n], i0, j0 ∈ [n] \ S
 corr(i0, j0|S ) := det Σ[S +i0,S + j0]

√
det Σ[S +i0,S +i0] det Σ[S + j0,S + j0]

is the partial cor-

relation of i0, j0 given S ; it is zero iff Xi0 , X j0 indep. given (Xs)s∈S .
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Partial correlations: S ⊆ [n], i0, j0 ∈ [n] \ S
 corr(i0, j0|S ) := det Σ[S +i0,S + j0]

√
det Σ[S +i0,S +i0] det Σ[S + j0,S + j0]

is the partial cor-

relation of i0, j0 given S ; it is zero iff Xi0 , X j0 indep. given (Xs)s∈S .

(Consequence of the) Hammersley-Clifford Theorem
The model {Σ | (a, ω)} ⊆ Rn×n is uniquely determined by the partial
correlations that vanish identically on it.

Remark: Two distinct DAGs can yield the same model (Markov
equivalence); cannot be distinguished with observational data.



9Fun exercises

Exercise 1: The following are equivalent:
1. det Σ[S + i0, S + j0] ≡ 0;
2. there exists Cup,Cdown ⊆ [m] with |Cup| + |Cdown| < |S | + 1 such
that every trek from S + i0 to S + j0 passes through Cup on its way
up or through Cdown on its way down;
3. S d-separates i0 from j0: every undirected path from i0 to j0
either has a noncollider in S or else has a collider → c ← such
that c and its descendents do not belong to S . (Yangming Di)
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3. S d-separates i0 from j0: every undirected path from i0 to j0
either has a noncollider in S or else has a collider → c ← such
that c and its descendents do not belong to S . (Yangming Di)

Exercise 2: if A is a square matrix, then det A[S , S ′] =

± det(A−1)[S ′, S ] · det(A). (So subdeterminants of Σ are also sub-
determinants of the concentration matrix Σ−1.)

Exercise 3: Fix i0, j0. If det Σ[S +i0, S + j0] ≡ 0 for some S ⊆ [n]\
{i0, j0}, then this holds for some set S ⊆Pa(i0) or some S ⊆Pa( j0).



10Discovering the graph from Σ: PC algorithm

Start with undirected Kn; E := {all 2-subsets of [n]}.

Phase 1: edge removal
For k = 0, . . . , n − 2 do: for {i0, j0} ∈ E and S ⊆ [n] \ {i0, j0} a set
of neighbours of i0 or of j0 with |S | = k compute corr(i0, j0|S ). If
zero, delete {i0, j0} from S .
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Start with undirected Kn; E := {all 2-subsets of [n]}.

Phase 1: edge removal
For k = 0, . . . , n − 2 do: for {i0, j0} ∈ E and S ⊆ [n] \ {i0, j0} a set
of neighbours of i0 or of j0 with |S | = k compute corr(i0, j0|S ). If
zero, delete {i0, j0} from S .

Phase 2: orientation
Use partial correlations to try and orient the edges in E.

Theorem (Spirtes-Glymour-Scheines)
If Σ is faithful to a single DAG, then it is found. If it is faithful to
a single Markov equivalence class of DAGs, then that is found.

In practice, “if zero” is replaced by “if |corr| ≤ λ”.



11(Non-)singularities

Geometry studied by Lin-Uhler-Sturmfels-Bühlmann:
Suppose true DAG G has i0 → j0. Set f := det Σ[S + i0, S + j0].
The PC-test |corr(i0, j0|S )| ≤ λ describes a neighbourhood Tube(λ)
of the hypersurface in H f := {a | f = 0} ⊆ RD (they take Ω = I).

H f

Tube(λ)
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The PC-test |corr(i0, j0|S )| ≤ λ describes a neighbourhood Tube(λ)
of the hypersurface in H f := {a | f = 0} ⊆ RD (they take Ω = I).

H f
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Tube(λ) is the region in parameter space where the PC-test would
delete {i0, j0} erroneously. If H f is smooth, then Vol(Tube(λ)) (rel-
ative to a fixed density on RD) is linear in λ for λ → 0. If not, it
may be superlinear.
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As λ → 0, Vol(Tube(λ)) ≈ Cλ`(− ln λ)m−1 for some C > 0 and
(`,m) the real log canonical threshold of f .
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As λ → 0, Vol(Tube(λ)) ≈ Cλ`(− ln λ)m−1 for some C > 0 and
(`,m) the real log canonical threshold of f .

They computed (`,m) for many tuples (G, i0, j0, S ). In particular:

Theorem (L-U-S-B)
If G is a complete DAG on n ≤ 6 vertices, then H f is smooth for
all choices of i0, j0, S .

Question (L-U-S-B)
Also for n > 6?

Proof method: find a power of det(Σ[S + i0 + j0, S + i0 + j0]) in
the Jacobian ideal 〈{ f } ∪ { ∂ f

∂ai j
|i→ j}〉; e.g. 240 cases for n = 6.



13New theorem

Theorem (D, arXiv: 1806.00320)
Let G be a DAG on [n], i0, j0 ∈ [n] distinct and S ⊆ [n] \ {i0, j0}.
Assume that i0 → j0 and that i0 → s for each s ∈ S below j0.
Then H f := {a ∈ RD | det Σ[S + i0, S + j0] = 0} is smooth.
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Theorem (D, arXiv: 1806.00320)
Let G be a DAG on [n], i0, j0 ∈ [n] distinct and S ⊆ [n] \ {i0, j0}.
Assume that i0 → j0 and that i0 → s for each s ∈ S below j0.
Then H f := {a ∈ RD | det Σ[S + i0, S + j0] = 0} is smooth.

Treat the ai, j as variables. Let J be the ideal in R[ai j | i → j]
generated by the partial derivatives of f . Goal: VR(J) = ∅.

Lemma 1
The as j, s ∈ S , j ∈ [n], s→ j don’t appear in f , so w.l.o.g. s 6→ j.

Lemma 2
For s ∈ S , i0 → s the variable ai0,s appears at most linearly in f ,
with coefficient ± det Σ[S + i0, S + j0 − s + i0]; so this is in J.
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Lemma 3
The variable ai0, j0 appears at most linearly in f , with coefficient
±(det Σ[S + i0, S + i0] − g) where g =

∑
T :S +i0→S +i0 sgn(T )w(T ),

the sum over T , no sided intersections, passing j0 on way down.
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Lemma 3
The variable ai0, j0 appears at most linearly in f , with coefficient
±(det Σ[S + i0, S + i0] − g) where g =

∑
T :S +i0→S +i0 sgn(T )w(T ),

the sum over T , no sided intersections, passing j0 on way down.

Let p j0,s be the sum of all weights of paths from j0 to s.

Lemma 4
g =

∑
s∈S ±det Σ[S + i0, S + i0 − s + j0] · p j0,s.

Proof of theorem: Modulo J we have
det Σ[S + i0, S + i0] = g =

∑
s∈S ±Σ[S + i0, S + i0 − s + j0] · p j0,s.

This is in J by Lemma 2. Now use that for a ∈ RD, Σ[S + i0, S + i0]
is positive definite, hence has nonzero determinant. �



15Discussion: a conjectured volume inequality

Setting
Let i0, j0, S ′, S be disjoint and such that each element of S ′ is a
descendant of i0 and of j0, and each element of S is a descendant
of each element of S ′. L-U-S-B conjecture, for λ ∈ [0, 1]:
Vol{a : |corr(i0, j0|S )| ≤ λ} ≥ Vol{a : |corr(i0, j0|S ′)| ≤ λ}

Motivation
‘It is widely believed that collider-stratification bias tends to at-
tenuate when it arises from more extended paths.’
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But taking
a∗13 = −3, a∗14 = −2,
a∗23 = 8, a∗24 = 10,
a∗3,5 = 2, a∗4,5 = 0 yields
corr(1, 2|5)2 = 1024

1189 >
88

105 = corr(1, 2|3, 4)2.
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corr(1, 2|5)2 = 1024
1189 >
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105 = corr(1, 2|3, 4)2.

So concentrating the mass near this point a∗ and taking a suitable
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√
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105 ,
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1024
1189 ), we find
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• true at least for the real log canonical thresholds?
• more generally, can the rlct be computed directly from the
graph? (L-U-S-B solve this, e.g., for trees without colliders.)
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