Hypersurfaces in PC testing

(image and text copyright Randall Munroe)

Jan Draisma

Universität Bern and TU Eindhoven

SIAGA:

SIAGA:

SIAM AG 19: 9–13 July 2019, Bern

 Γ a directed acyclic graph (DAG) on [m] for $i \rightarrow j$ a weight $w_{ij} \rightsquigarrow path\ matrix\ M$

 Γ a directed acyclic graph (DAG) on [m] for $i \rightarrow j$ a weight $w_{ij} \rightsquigarrow path\ matrix\ M$

Example: $m_{16} = w_{13}w_{36} + w_{14}w_{46} = \sum_{\text{path } p: i \to j} w(p)$

 Γ a directed acyclic graph (DAG) on [m] for $i \rightarrow j$ a weight $w_{ij} \rightsquigarrow path\ matrix\ M$

Example: $m_{16} = w_{13}w_{36} + w_{14}w_{46} = \sum_{\text{path } p: i \to j} w(p)$

Lemma:
$$S, S' \subseteq [m], |S| = |S'| \rightsquigarrow$$

$$\det M[S, S'] = \sum_{\pi: S \to S'} \operatorname{sgn}(\pi) \prod_{i \in S} m_{i, \pi(i)}$$

$$= \sum_{\text{path system } P: S \to S'} \operatorname{sgn}(P) w(P)$$

 Γ a directed acyclic graph (DAG) on [m] for $i \rightarrow j$ a weight $w_{ij} \rightsquigarrow path\ matrix\ M$

Example: $m_{16} = w_{13}w_{36} + w_{14}w_{46} = \sum_{\text{path } p: i \to j} w(p)$

Lemma: $S, S' \subseteq [m], |S| = |S'| \rightsquigarrow$ $\det M[S, S'] = \sum_{\pi:S \to S'} \operatorname{sgn}(\pi) \prod_{i \in S} m_{i,\pi(i)}$ $= \sum_{\text{path system } P:S \to S'} \operatorname{sgn}(P)w(P) = \sum_{\text{vertex disjoint } P:I \to J} \operatorname{sgn}(P)w(P)!$

 Γ a directed acyclic graph (DAG) on [m] for $i \rightarrow j$ a weight $w_{ij} \rightsquigarrow path\ matrix\ M$

Example: $m_{16} = w_{13}w_{36} + w_{14}w_{46} = \sum_{\text{path } p: i \to j} w(p)$

Lemma: $S, S' \subseteq [m], |S| = |S'| \rightsquigarrow$ $\det M[S, S'] = \sum_{\pi:S \to S'} \operatorname{sgn}(\pi) \prod_{i \in S} m_{i,\pi(i)}$ $= \sum_{\text{path system } P:S \to S'} \operatorname{sgn}(P)w(P) = \sum_{\text{vertex disjoint } P:I \to J} \operatorname{sgn}(P)w(P)!$

Example: $S = \{1, 2\}, S' = \{6, 7\} \rightsquigarrow \det(M[S, S']) = (w_{13}w_{36})(w_{24}w_{47}) + (w_{13}w_{36})(w_{25}w_{57}) + (w_{14}w_{46})(w_{25}w_{57});$ the path systems intersecting at 4 cancel out!

Interpretation:

- arrows indicate causal relationships
- graph is directed, acyclic (DAG)
- graph implies CI statements such as:

yellow teeth and tar in lungs are independent given smoking

$$G = ([n], D)$$
 a DAG, write $i \rightarrow j$ for $(i, j) \in D$
 X_1, \dots, X_n : jointly Gaussian random variables

Relations

$$X_j = \sum_{i \to j} a_{ij} X_i + \epsilon_j, \quad \epsilon \sim \mathcal{N}(0, \operatorname{diag}(\omega_1, \dots, \omega_n) = \Omega)$$

G = ([n], D) a DAG, write $i \rightarrow j$ for $(i, j) \in D$ X_1, \dots, X_n : jointly Gaussian random variables

Relations

$$X_j = \sum_{i \to j} a_{ij} X_i + \epsilon_j, \quad \epsilon \sim \mathcal{N}(0, \operatorname{diag}(\omega_1, \dots, \omega_n) = \Omega)$$

Parameter space

$$(a,\omega) \in \mathbb{R}^D \times \mathbb{R}^n_{>0}$$

G = ([n], D) a DAG, write $i \rightarrow j$ for $(i, j) \in D$ X_1, \dots, X_n : jointly Gaussian random variables

Relations

$$X_j = \sum_{i \to j} a_{ij} X_i + \epsilon_j, \quad \epsilon \sim \mathcal{N}(0, \operatorname{diag}(\omega_1, \dots, \omega_n) = \Omega)$$

Parameter space

$$(a,\omega) \in \mathbb{R}^D \times \mathbb{R}^n_{>0}$$

Covariance matrix of *X*

$$(I-A)^T X = \epsilon$$
, so $X = (I-A)^{-T} \epsilon$, so $\Sigma = (I-A)^{-T} \Omega (I-A)^{-1}$

Here $a_{ij} = 0$ if $i \not\rightarrow j$, so A is nilpotent and $(I - A)^{-1} = I + A + A^2 + \cdots + A^{n-1}$.

 $\Sigma = (I + A^T + (A^T)^2 + \dots + (A^T)^{n-1}) \cdot \Omega \cdot (I + A + A^2 + \dots + A^{n-1})$ $\leadsto \Sigma_{ij} = \sum_{\text{treks } t: i \to j} w(t), \text{ where:}$

Definition

A trek $t: i \to j$ is a pair $[(i = i_0, i_1, \dots, i_k), (i_k, i_{k+1}, \dots, i_l = j)],$

 $w(t) := \left(\prod_{j=1}^{k} a_{i_j, i_{j-1}}\right) \cdot \omega_{i_k} \cdot \left(\prod_{j=k}^{l-1} a_{i_j, i_{j+1}}\right).$

down

$$\Sigma = (I + A^T + (A^T)^2 + \dots + (A^T)^{n-1}) \cdot \Omega \cdot (I + A + A^2 + \dots + A^{n-1})$$

$$\leadsto \Sigma_{ij} = \sum_{\text{treks } t: i \to j} w(t), \text{ where:}$$

Definition

A trek $t: i \to j$ is a pair $[(i = i_0, i_1, \dots, i_k), (i_k, i_{k+1}, \dots, i_l = j)],$ $w(t) := (\prod_{j=1}^k a_{i_j, i_{j-1}}) \cdot \omega_{i_k} \cdot (\prod_{j=k}^{l-1} a_{i_j, i_{j+1}}).$

Theorem (Sullivant-Talaska-D)

Let $S, S' \subseteq [n]$ with |S| = |S'|. Then $\det \Sigma[S, S'] = \sum_{T:S \to S'} \operatorname{sgn}(T)w(T)$, where the sum is over trek systems $S \to S'$ without sided (red or blue) intersections. Formula is cancellation-free with coefficients $\pm 2^x$.

(Apply GVL to $G^{op} \rightarrow G$.)

down

$$\det \Sigma[134, 234] = -(\omega_1 a_{14})(\omega_3)(a_{24}\omega_2) - (\omega_1 a_{13})(a_{23}\omega_2)(\omega_4)$$

$$\det \Sigma[134, 234] = -(\omega_1 a_{14})(\omega_3)(a_{24}\omega_2) - (\omega_1 a_{13})(a_{23}\omega_2)(\omega_4)$$

$$\det \Sigma[15, 25] = -(\omega_1 a_{13} a_{35})(a_{35} a_{23} \omega_2) - (\omega_1 a_{14} a_{45})(a_{35} a_{23} \omega_2) - (\omega_1 a_{13} a_{35})(a_{45} a_{24} \omega_2) - (\omega_1 a_{14} a_{45})(a_{45} a_{24} \omega_2)$$

$$\det \Sigma[134, 234] = -(\omega_1 a_{14})(\omega_3)(a_{24}\omega_2) - (\omega_1 a_{13})(a_{23}\omega_2)(\omega_4)$$

$$\det \Sigma[15, 25] = -(\omega_1 a_{13} a_{35})(a_{35} a_{23} \omega_2) - (\omega_1 a_{14} a_{45})(a_{35} a_{23} \omega_2) - (\omega_1 a_{13} a_{35})(a_{45} a_{24} \omega_2) - (\omega_1 a_{14} a_{45})(a_{45} a_{24} \omega_2)$$

$$\det \Sigma[134, 345] \equiv 0$$

$$\det \Sigma[134, 234] = -(\omega_1 a_{14})(\omega_3)(a_{24}\omega_2) - (\omega_1 a_{13})(a_{23}\omega_2)(\omega_4)$$

$$\det \Sigma[15, 25] = -(\omega_1 a_{13} a_{35})(a_{35} a_{23} \omega_2) - (\omega_1 a_{14} a_{45})(a_{35} a_{23} \omega_2) - (\omega_1 a_{13} a_{35})(a_{45} a_{24} \omega_2) - (\omega_1 a_{14} a_{45})(a_{45} a_{24} \omega_2)$$

 $\det \Sigma[134, 345] \equiv 0$

Corollary of S-T-D

det $\Sigma[S, S']$ is not identically zero on $\mathbb{R}^D \times \mathbb{R}^n_{>0}$ if and only if there exists a trek system $T: S \to S'$ without sided intersection.

```
Partial correlations: S \subseteq [n], i_0, j_0 \in [n] \setminus S

\leadsto \operatorname{corr}(i_0, j_0 | S) := \frac{\det \Sigma[S + i_0, S + j_0]}{\sqrt{\det \Sigma[S + i_0, S + i_0] \det \Sigma[S + j_0, S + j_0]}} is the partial correlation of i_0, j_0 given S; it is zero iff X_{i_0}, X_{j_0} indep. given (X_s)_{s \in S}.
```

Partial correlations: $S \subseteq [n], i_0, j_0 \in [n] \setminus S$ $\leadsto \operatorname{corr}(i_0, j_0 | S) := \frac{\det \Sigma[S + i_0, S + j_0]}{\sqrt{\det \Sigma[S + i_0, S + i_0] \det \Sigma[S + j_0, S + j_0]}}$ is the partial correlation of i_0, j_0 given S; it is zero iff X_{i_0}, X_{j_0} indep. given $(X_s)_{s \in S}$.

(Consequence of the) Hammersley-Clifford Theorem

The model $\{\Sigma \mid (a, \omega)\} \subseteq \mathbb{R}^{n \times n}$ is uniquely determined by the partial correlations that vanish identically on it.

Remark: Two distinct DAGs can yield the same model (*Markov equivalence*); cannot be distinguished with observational data.

Fun exercises

Exercise 1: The following are equivalent:

- 1. $\det \Sigma[S + i_0, S + j_0] \equiv 0;$
- 2. there exists C_{up} , $C_{\text{down}} \subseteq [m]$ with $|C_{\text{up}}| + |C_{\text{down}}| < |S| + 1$ such that every trek from $S + i_0$ to $S + j_0$ passes through C_{up} on its way up or through C_{down} on its way down;
- 3. S d-separates i_0 from j_0 : every undirected path from i_0 to j_0 either has a *noncollider* in S or else has a *collider* $\rightarrow c \leftarrow$ such that c and its descendents do not belong to S. (Yangming Di)

Fun exercises

Exercise 1: The following are equivalent:

- 1. $\det \Sigma[S + i_0, S + j_0] \equiv 0$;
- 2. there exists C_{up} , $C_{\text{down}} \subseteq [m]$ with $|C_{\text{up}}| + |C_{\text{down}}| < |S| + 1$ such that every trek from $S + i_0$ to $S + j_0$ passes through C_{up} on its way up or through C_{down} on its way down;
- 3. S d-separates i_0 from j_0 : every undirected path from i_0 to j_0 either has a *noncollider* in S or else has a *collider* $\rightarrow c \leftarrow$ such that c and its descendents do not belong to S. (Yangming Di)

Exercise 2: if A is a square matrix, then $\det A[S, S'] = \pm \det(A^{-1})[\overline{S'}, \overline{S}] \cdot \det(A)$. (So subdeterminants of Σ are also subdeterminants of the *concentration matrix* Σ^{-1} .)

Exercise 1: The following are equivalent:

- 1. $\det \Sigma[S + i_0, S + j_0] \equiv 0;$
- 2. there exists $C_{\rm up}$, $C_{\rm down} \subseteq [m]$ with $|C_{\rm up}| + |C_{\rm down}| < |S| + 1$ such that every trek from $S + i_0$ to $S + j_0$ passes through $C_{\rm up}$ on its way up or through $C_{\rm down}$ on its way down;
- 3. S d-separates i_0 from j_0 : every undirected path from i_0 to j_0 either has a *noncollider* in S or else has a *collider* $\rightarrow c \leftarrow$ such that c and its descendents do not belong to S. (Yangming Di)

Exercise 2: if A is a square matrix, then $\det A[S, S'] = \pm \det(A^{-1})[\overline{S'}, \overline{S}] \cdot \det(A)$. (So subdeterminants of Σ are also subdeterminants of the *concentration matrix* Σ^{-1} .)

Exercise 3: Fix i_0 , j_0 . If det $\Sigma[S + i_0, S + j_0] \equiv 0$ for some $S \subseteq [n] \setminus \{i_0, j_0\}$, then this holds for some set $S \subseteq Pa(i_0)$ or some $S \subseteq Pa(j_0)$.

Phase 1: edge removal

For k = 0, ..., n - 2 do: for $\{i_0, j_0\} \in E$ and $S \subseteq [n] \setminus \{i_0, j_0\}$ a set of neighbours of i_0 or of j_0 with |S| = k compute $corr(i_0, j_0|S)$. If zero, delete $\{i_0, j_0\}$ from S.

Phase 1: edge removal

For k = 0, ..., n - 2 do: for $\{i_0, j_0\} \in E$ and $S \subseteq [n] \setminus \{i_0, j_0\}$ a set of neighbours of i_0 or of j_0 with |S| = k compute $corr(i_0, j_0|S)$. If zero, delete $\{i_0, j_0\}$ from S.

Phase 2: orientation

Use partial correlations to try and orient the edges in E.

Phase 1: edge removal

For k = 0, ..., n - 2 do: for $\{i_0, j_0\} \in E$ and $S \subseteq [n] \setminus \{i_0, j_0\}$ a set of neighbours of i_0 or of j_0 with |S| = k compute $corr(i_0, j_0|S)$. If zero, delete $\{i_0, j_0\}$ from S.

Phase 2: orientation

Use partial correlations to try and orient the edges in E.

Theorem (Spirtes-Glymour-Scheines)

If Σ is *faithful* to a *single* DAG, then it is found. If it is faithful to a single Markov equivalence class of DAGs, then that is found.

Phase 1: edge removal

For k = 0, ..., n - 2 do: for $\{i_0, j_0\} \in E$ and $S \subseteq [n] \setminus \{i_0, j_0\}$ a set of neighbours of i_0 or of j_0 with |S| = k compute $corr(i_0, j_0|S)$. If zero, delete $\{i_0, j_0\}$ from S.

Phase 2: orientation

Use partial correlations to try and orient the edges in E.

Theorem (Spirtes-Glymour-Scheines)

If Σ is *faithful* to a *single* DAG, then it is found. If it is faithful to a single Markov equivalence class of DAGs, then that is found.

In practice, "if zero" is replaced by "if $|corr| \leq \lambda$ ".

Geometry studied by Lin-Uhler-Sturmfels-Bühlmann:

Suppose true DAG G has $i_0 \to j_0$. Set $f := \det \Sigma[S + i_0, S + j_0]$. The PC-test $|\operatorname{corr}(i_0, j_0|S)| \le \lambda$ describes a neighbourhood Tube(λ) of the hypersurface in $H_f := \{a \mid f = 0\} \subseteq \mathbb{R}^D$ (they take $\Omega = I$).

Geometry studied by Lin-Uhler-Sturmfels-Bühlmann:

Suppose true DAG G has $i_0 \to j_0$. Set $f := \det \Sigma[S + i_0, S + j_0]$. The PC-test $|\operatorname{corr}(i_0, j_0|S)| \le \lambda$ describes a neighbourhood Tube(λ) of the hypersurface in $H_f := \{a \mid f = 0\} \subseteq \mathbb{R}^D$ (they take $\Omega = I$).

Tube(λ) is the region in parameter space where the PC-test would delete $\{i_0, j_0\}$ erroneously. If H_f is smooth, then $Vol(Tube(\lambda))$ (relative to a fixed density on \mathbb{R}^D) is linear in λ for $\lambda \to 0$. If not, it may be superlinear.

(Non-)singularities

Theorem (Lin-Uhler-Sturmfels-Bühlman)

As $\lambda \to 0$, Vol(Tube(λ)) $\approx C\lambda^{\ell}(-\ln \lambda)^{m-1}$ for some C > 0 and (ℓ, m) the real log canonical threshold of f.

Theorem (Lin-Uhler-Sturmfels-Bühlman)

As $\lambda \to 0$, Vol(Tube(λ)) $\approx C\lambda^{\ell}(-\ln \lambda)^{m-1}$ for some C > 0 and (ℓ, m) the *real log canonical threshold* of f.

They computed (ℓ, m) for many tuples (G, i_0, j_0, S) . In particular:

Theorem (L-U-S-B)

If G is a complete DAG on $n \le 6$ vertices, then H_f is smooth for all choices of i_0, j_0, S .

Proof method: find a power of $\det(\Sigma[S+i_0+j_0,S+i_0+j_0])$ in the *Jacobian ideal* $\langle \{f\} \cup \{\frac{\partial f}{\partial a_{ii}} | i \rightarrow j\} \rangle$; e.g. 240 cases for n=6.

Theorem (Lin-Uhler-Sturmfels-Bühlman)

As $\lambda \to 0$, Vol(Tube(λ)) $\approx C\lambda^{\ell}(-\ln \lambda)^{m-1}$ for some C > 0 and (ℓ, m) the *real log canonical threshold* of f.

They computed (ℓ, m) for many tuples (G, i_0, j_0, S) . In particular:

Theorem (L-U-S-B)

If G is a complete DAG on $n \le 6$ vertices, then H_f is smooth for all choices of i_0, j_0, S .

Proof method: find a power of $\det(\Sigma[S+i_0+j_0,S+i_0+j_0])$ in the *Jacobian ideal* $\langle \{f\} \cup \{\frac{\partial f}{\partial a_{ij}}|i \rightarrow j\} \rangle$; e.g. 240 cases for n=6.

Question (L-U-S-B)

Also for n > 6?

Theorem (D, arXiv: 1806.00320)

Let G be a DAG on [n], $i_0, j_0 \in [n]$ distinct and $S \subseteq [n] \setminus \{i_0, j_0\}$. Assume that $i_0 \to j_0$ and that $i_0 \to s$ for each $s \in S$ below j_0 . Then $H_f := \{a \in \mathbb{R}^D \mid \det \Sigma[S + i_0, S + j_0] = 0\}$ is smooth.

Theorem (D, arXiv: 1806.00320)

Let G be a DAG on [n], $i_0, j_0 \in [n]$ distinct and $S \subseteq [n] \setminus \{i_0, j_0\}$. Assume that $i_0 \to j_0$ and that $i_0 \to s$ for each $s \in S$ below j_0 . Then $H_f := \{a \in \mathbb{R}^D \mid \det \Sigma[S + i_0, S + j_0] = 0\}$ is smooth.

Treat the $a_{i,j}$ as variables. Let J be the ideal in $\mathbb{R}[a_{ij} \mid i \rightarrow j]$ generated by the partial derivatives of f. Goal: $V_{\mathbb{R}}(J) = \emptyset$.

Lemma 1

The $a_{sj}, s \in S, j \in [n], s \to j$ don't appear in f, so w.l.o.g. $s \not\to j$.

Theorem (D, arXiv: 1806.00320)

Let G be a DAG on [n], $i_0, j_0 \in [n]$ distinct and $S \subseteq [n] \setminus \{i_0, j_0\}$. Assume that $i_0 \to j_0$ and that $i_0 \to s$ for each $s \in S$ below j_0 . Then $H_f := \{a \in \mathbb{R}^D \mid \det \Sigma[S + i_0, S + j_0] = 0\}$ is smooth.

Treat the $a_{i,j}$ as variables. Let J be the ideal in $\mathbb{R}[a_{ij} \mid i \rightarrow j]$ generated by the partial derivatives of f. Goal: $V_{\mathbb{R}}(J) = \emptyset$.

Lemma 1

The $a_{sj}, s \in S, j \in [n], s \to j$ don't appear in f, so w.l.o.g. $s \not\to j$.

Lemma 2

For $s \in S$, $i_0 \to s$ the variable $a_{i_0,s}$ appears at most linearly in f, with coefficient $\pm \det \Sigma[S + i_0, S + j_0 - s + i_0]$; so this is in J.

Lemma 3

The variable a_{i_0,j_0} appears at most linearly in f, with coefficient $\pm(\det \Sigma[S+i_0,S+i_0]-g)$ where $g=\sum_{T:S+i_0\to S+i_0}\operatorname{sgn}(T)w(T)$, the sum over T, no sided intersections, passing j_0 on way down.

Lemma 3

The variable a_{i_0,j_0} appears at most linearly in f, with coefficient $\pm(\det \Sigma[S+i_0,S+i_0]-g)$ where $g=\sum_{T:S+i_0\to S+i_0}\operatorname{sgn}(T)w(T)$, the sum over T, no sided intersections, passing j_0 on way down.

Let $p_{j_0,s}$ be the sum of all weights of paths from j_0 to s.

Lemma 4

$$g = \sum_{s \in S} \pm \det \Sigma[S + i_0, S + i_0 - s + j_0] \cdot p_{j_0,s}.$$

Lemma 3

The variable a_{i_0,j_0} appears at most linearly in f, with coefficient $\pm(\det \Sigma[S+i_0,S+i_0]-g)$ where $g=\sum_{T:S+i_0\to S+i_0}\operatorname{sgn}(T)w(T)$, the sum over T, no sided intersections, *passing* j_0 *on way down*.

Let $p_{j_0,s}$ be the sum of all weights of paths from j_0 to s.

Lemma 4

$$g = \sum_{s \in S} \pm \det \Sigma[S + i_0, S + i_0 - s + j_0] \cdot p_{j_0,s}.$$

Proof of theorem: Modulo *J* we have

$$\det \Sigma[S + i_0, S + i_0] = g = \sum_{s \in S} \pm \Sigma[S + i_0, S + i_0 - s + j_0] \cdot p_{j_0, s}.$$

Lemma 3

The variable a_{i_0,j_0} appears at most linearly in f, with coefficient $\pm(\det \Sigma[S+i_0,S+i_0]-g)$ where $g=\sum_{T:S+i_0\to S+i_0}\operatorname{sgn}(T)w(T)$, the sum over T, no sided intersections, passing j_0 on way down.

Let $p_{j_0,s}$ be the sum of all weights of paths from j_0 to s.

Lemma 4

$$g = \sum_{s \in S} \pm \det \Sigma[S + i_0, S + i_0 - s + j_0] \cdot p_{j_0,s}.$$

Proof of theorem: Modulo *J* we have

$$\det \Sigma[S + i_0, S + i_0] = g = \sum_{s \in S} \pm \Sigma[S + i_0, S + i_0 - s + j_0] \cdot p_{j_0, s}.$$

This is in *J* by Lemma 2. Now use that for $a \in \mathbb{R}^D$, $\Sigma[S + i_0, S + i_0]$ is positive definite, hence has nonzero determinant.

Let i_0, j_0, S', S be disjoint and such that each element of S' is a descendant of i_0 and of j_0 , and each element of S is a descendant of each element of S'. L-U-S-B conjecture, for $\lambda \in [0, 1]$: Vol $\{a : |\text{corr}(i_0, j_0|S)| \le \lambda\} \ge \text{Vol}\{a : |\text{corr}(i_0, j_0|S')| \le \lambda\}$

Motivation

'It is widely believed that collider-stratification bias tends to attenuate when it arises from more extended paths.'

Let i_0, j_0, S', S be disjoint and such that each element of S' is a descendant of i_0 and of j_0 , and each element of S is a descendant of each element of S'. L-U-S-B conjecture, for $\lambda \in [0, 1]$:

 $Vol\{a : |corr(i_0, j_0|S)| \le \lambda\} \ge Vol\{a : |corr(i_0, j_0|S')| \le \lambda\}$

Motivation

'It is widely believed that collider-stratification bias tends to attenuate when it arises from more extended paths.'

But taking

$$a_{13}^* = -3, a_{14}^* = -2,$$
 $a_{23}^* = 8, a_{24}^* = 10,$
 $a_{3,5}^* = 2, a_{4,5}^* = 0 \text{ yields}$
 $corr(1, 2|5)^2 = \frac{1024}{1189} > \frac{88}{105} = corr(1, 2|3, 4)^2.$

$$corr(1, 2|5)^2 = \frac{1024}{1189} > \frac{88}{105} = corr(1, 2|3, 4)^2.$$

So concentrating the mass near this point a^* and taking a suitable

$$\lambda \in (\sqrt{\frac{88}{105}}, \sqrt{\frac{1024}{1189}})$$
, we find

 $Vol\{a : |corr(1, 2|5)| < \lambda\} < Vol\{a : |corr(1, 2|3, 4)| < \lambda\}$

$$corr(1, 2|5)^2 = \frac{1024}{1189} > \frac{88}{105} = corr(1, 2|3, 4)^2.$$

So concentrating the mass near this point a^* and taking a suitable

$$\lambda \in (\sqrt{\frac{88}{105}}, \sqrt{\frac{1024}{1189}})$$
, we find

 $Vol\{a : |corr(1, 2|5)| < \lambda\} < Vol\{a : |corr(1, 2|3, 4)| < \lambda\}$

Interesting open problems:

- after fixing the density, true for small λ ?
- true at least for the real log canonical thresholds?
- more generally, can the rlct be computed directly from the graph? (L-U-S-B solve this, e.g., for trees without colliders.)

$$corr(1, 2|5)^2 = \frac{1024}{1189} > \frac{88}{105} = corr(1, 2|3, 4)^2.$$

So concentrating the mass near this point a^* and taking a suitable

$$\lambda \in (\sqrt{\frac{88}{105}}, \sqrt{\frac{1024}{1189}})$$
, we find

 $Vol\{a : |corr(1, 2|5)| < \lambda\} < Vol\{a : |corr(1, 2|3, 4)| < \lambda\}$

Interesting open problems:

- after fixing the density, true for small λ ?
- true at least for the real log canonical thresholds?
- more generally, can the rlct be computed directly from the graph? (L-U-S-B solve this, e.g., for trees without colliders.)

THANK YOU!