

Tensors of bounded rank

Jan Draisma

12 April 2012 Nederlands Mathematisch Congres

Tensors of bounded rank

Jan Draisma

12 April 2012 Nederlands Mathematisch Congres

What's a tensor?

or

$$\sum_{i=1}^{k} v_{i1} \otimes \cdots \otimes v_{ip} \in V_1 \otimes \cdots \otimes V_p$$

Matrix rank

Definition

rank of $\omega \in V_1 \otimes V_2$ is the minimal k in $\omega = \sum_{i=1}^k v_{i1} \otimes v_{i2}$

Facts

- equals matrix rank
- relevant for applications (SVD)
- efficiently computable
- rk $\omega \le k \Leftrightarrow (k+1) \times (k+1)$ subdeterminants of ω are zero

What's a tensor?

or

$$\sum_{i=1}^{k} v_{i1} \otimes \cdots \otimes v_{ip} \in V_1 \otimes \cdots \otimes V_p$$

Matrix rank

Definition

rank of $\omega \in V_1 \otimes V_2$ is the minimal k in $\omega = \sum_{i=1}^k v_{i1} \otimes v_{i2}$

Facts

- equals matrix rank
- relevant for applications (SVD)
- efficiently computable
- rk $\omega \le k \Leftrightarrow (k+1) \times (k+1)$ subdeterminants of ω are zero

Tensor rank

Definition

rank of $\omega \in V_1 \otimes \cdots \otimes V_p$ is the minimal k in $\omega = \sum_{i=1}^k v_{i1} \otimes \cdots \otimes v_{ip}$

Facts

- relevant for applications(SIAM activity group in AG!)
- NP-hard (Håstad, Hillar-Lim)

Example (Strassen)

 2×2 matrix multiplication $\in \mathbb{C}^4 \otimes \mathbb{C}^4 \otimes \mathbb{C}^4$ has rank 7 instead of 8

 $n \times n$ matrix multiplication: $O(n^{\log_2 7})$ scalar multiplications

Not closed

Question

characterisation of $\{rk \le k\}$ by equations?

Example

$$\omega = e_1 \otimes A + e_2 \otimes B \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

$$\Delta = \text{discriminant } (\det(xA + yB))$$

$$\Delta \neq 0$$
, rk = 2

Tensor rank

Definition

rank of $\omega \in V_1 \otimes \cdots \otimes V_p$ is the minimal k in $\omega = \sum_{i=1}^k v_{i1} \otimes \cdots \otimes v_{ip}$

Facts

- relevant for applications(SIAM activity group in AG!)
- NP-hard (Håstad, Hillar-Lim)

Example (Strassen)

 2×2 matrix multiplication $\in \mathbb{C}^4 \otimes \mathbb{C}^4 \otimes \mathbb{C}^4$ has rank 7 instead of 8

 $n \times n$ matrix multiplication: $O(n^{\log_2 7})$ scalar multiplications

Not closed

Question

characterisation of $\{rk \le k\}$ by equations?

Example

$$\omega = e_1 \otimes A + e_2 \otimes B \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

$$\Delta = \text{discriminant } (\det(xA + yB))$$

$$\Delta \neq 0$$
, rk = 2

Border rank

Definition

$$\omega$$
 has border rank $\leq k$ if $\omega \in \{ \operatorname{rk} \leq k \}$

so
$$\operatorname{brk}(\omega) \leq 2$$
 for $\omega \in (\mathbb{C}^2)^{\otimes 3}$

Example (Landsberg) 2×2 matrix multiplication has brk = 7

Flattening

$$V_1 \otimes \cdots \otimes V_p \rightarrow (V_1 \otimes \cdots \otimes V_q) \otimes (V_{q+1} \otimes \cdots \otimes V_p)$$
 does not increase rank

 $(k+1) \times (k+1)$ -determinants of flattenings vanish on $\{brk \le k\}$

Border rank

Definition

$$\omega$$
 has border rank $\leq k$ if $\omega \in \{ \operatorname{rk} \leq k \}$

so
$$\operatorname{brk}(\omega) \leq 2$$
 for $\omega \in (\mathbb{C}^2)^{\otimes 3}$

Example (Landsberg) 2×2 matrix multiplication has brk = 7

Flattening

$$V_1 \otimes \cdots \otimes V_p \rightarrow (V_1 \otimes \cdots \otimes V_q) \otimes (V_{q+1} \otimes \cdots \otimes V_p)$$

does not increase rank

 $(k+1) \times (k+1)$ -determinants of flattenings vanish on $\{brk \le k\}$

Bounded degree

Theorem (D-Kuttler)

For fixed k:

- there exists d = d(k) such that for all p, V_1, \ldots, V_p the set $\{brk \leq k\}$ is defined by the vanishing of polynomials of degree at most d(k).
- $\operatorname{brk} \leq k$ can be tested in polynomial time.

Known

k	d(k)	
0	1	
1	2	Segre(?)
2	3	Landsberg-Manivel/Raicu
4	≥ 9	Friedland-Gross/
		Bates-Oeding

Strassen's hypersurface

(following Ottaviani)

hence rank ≤ 4 to rank ≤ 8 take determinant!

Bounded degree

Theorem (D-Kuttler)

For fixed *k*:

- there exists d = d(k) such that for all p, V_1, \ldots, V_p the set $\{ brk \leq k \}$ is defined by the vanishing of polynomials of degree at most d(k).
- brk < k can be tested in polynomial time.

Known

k	d(k)	
0	1	
1	2	Segre(?)
2	3	Landsberg-Manivel/Raicu
4	≥ 9	Friedland-Gross/
		Bates-Oeding

Strassen's hypersurface

(following Ottaviani)

$$\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3} \\
\downarrow (x,y,z) \mapsto \begin{bmatrix} 0 & x & y \\ -x & 0 & z \\ -y & -z & 0 \end{bmatrix}$$

$$\mathbb{C}^{3} \otimes (\mathbb{C}^{3} \otimes \mathbb{C}^{3}) \otimes \mathbb{C}^{3} \\
\downarrow (\mathbb{C}^{3} \otimes \mathbb{C}^{3}) \otimes (\mathbb{C}^{3} \otimes \mathbb{C}^{3})$$

$$\downarrow \\
\mathbb{C}^{9} \otimes \mathbb{C}^{9}$$

maps rank 1 to rank 2 hence rank ≤ 4 to rank ≤ 8 take determinant!

Bounded degree, proof sketch

- w.l.o.g. all $V_i = V := \mathbb{C}^{k+1}$
- $-X_p := \{ \text{brk} \le k \} \subseteq V^{\otimes p}$
- $Y_p \subseteq V^{\otimes p}$ defined by $(k+1) \times (k+1)$ -determinants of flattenings

$$\leadsto X_p \subseteq Y_p \subseteq V^{\otimes p}$$

- construct $T_{\infty} = \lim_{\leftarrow p} V^{\otimes p}$
- contains $Y_{\infty} = \lim_{\leftarrow p} Y_p$
- contains $X_{\infty} = \lim_{\leftarrow p} X_p$

$$\leadsto X_{\infty} \subseteq Y_{\infty} \subseteq T_{\infty}$$

Tensors: the limit

$$\begin{aligned} & \text{fix } x_0 \in V^* \\ & V^{\otimes p+1} \to V^{\otimes p}, \\ & v_1 \otimes \cdots \otimes v_{p+1} \\ & \mapsto x_0(v_{p+1})v_1 \otimes \cdots \otimes v_p \end{aligned}$$

An element of T_{∞}

Bounded degree, proof sketch

- w.l.o.g. all $V_i = V := \mathbb{C}^{k+1}$
- $-X_p := \{ \text{brk} \le k \} \subseteq V^{\otimes p}$
- $Y_p \subseteq V^{\otimes p}$ defined by $(k+1) \times (k+1)$ -determinants of flattenings

$$\leadsto X_p \subseteq Y_p \subseteq V^{\otimes p}$$

- construct $T_{\infty} = \lim_{\leftarrow p} V^{\otimes p}$
- contains $Y_{\infty} = \lim_{\leftarrow p} Y_p$
- contains $X_{\infty} = \lim_{\leftarrow p} X_p$

$$\leadsto X_{\infty} \subseteq Y_{\infty} \subseteq T_{\infty}$$

Tensors: the limit

$$\begin{aligned} & \text{fix } x_0 \in V^* \\ & V^{\otimes p+1} \to V^{\otimes p}, \\ & v_1 \otimes \cdots \otimes v_{p+1} \\ & \mapsto x_0(v_{p+1})v_1 \otimes \cdots \otimes v_p \end{aligned}$$

An element of T_{∞}

Bounded degree, proof sketch

Highly symmetric

on
$$T_{\infty}, X_{\infty}, Y_{\infty}$$
 acts $G_{\infty} := \bigcup_p (\operatorname{Sym}(p) \ltimes \operatorname{GL}(V)^p)$

Last step

Show that
$$Y_{\infty}(\mathbb{C})/G_{\infty}$$
 is Noetherian.

