The space of monoid preorders

Question [Metcalfe]

∃? an algorithm that solves systems such as

$$\max\{x_1x_2x_3, x_4x_5x_6, x_7x_8x_9\} < \min\{x_1x_4x_7, x_2x_5x_8, x_3x_6x_9\}$$

... for the unknown *preorder*
$$\leq$$
 on $\{x^a \mid a \in \mathbb{Z}_{>0}^9\}$?

Setting

 (Π, \cdot) : commutative monoid with neutral element 1

Definition

A preorder \leq on Π :

- $(u \le v \text{ and } v \le w) \Rightarrow u \le w$
- u < u
- $u \le v$ or $v \le u$
- $u \le v \Rightarrow uw \le vw$

we do *not* require:

- $(u \le v \text{ and } v \le u) \Rightarrow u = v$
- 1 ≤ u

- $(\Pi, \cdot) = (\mathbb{R}^k, +)$ and $u \leq_{\text{lex}} v :\Leftrightarrow u = v$ or the first nonzero entry of u v is < 0.
- $\rho: \Pi \to \Pi'$ a homomorphism, \leq' a preorder on $\Pi' \leadsto \leq:= \rho^*(\leq')$ by $u \leq v:\Leftrightarrow \rho(u) \leq' \rho(v)$ is a preorder on Π .

Theorem

[Robbiano, 1985]

For any preorder \leq on $(\mathbb{Z}^n, +)$ there exist $k \leq n$ and a homomorphism $\rho : \mathbb{Z}^n \to \mathbb{R}^k$ such that $\leq = \rho^*(\leq_{\mathsf{lex}})$.

• $Mon_2 = \{x^i y^j \mid i, j \ge 0\} \cong \mathbb{Z}^2_{\ge 0}$ \le means further up the rainbow here:

Question

Characterisation of preorders on $Mon_n \grave{a} la$ Robbiano?

Definition: An *ideal* in Π is a subset I with $\Pi \cdot I \subseteq \Pi$.

- For $\Pi = \text{Mon}_n \leadsto \text{monomial ideals}$ in $K\Pi = K[x_1, ..., x_n]$.
- If $1 \le \text{all } u \in \Pi$, then each up-set is an ideal; conversely, can construct positive preorders from certain ideals.

Important observation

 \leq a preorder on $\Pi \rightsquigarrow I_{\leq} := \langle \{u - v \mid u \leq v \leq u\} \rangle_{K}$ is a binomial ideal in $K\Pi$ (in particular finitely generated).

- If I_{\leq} is *prime*, then \leq is the pull-back of a preorder on the *groupification* $Gr(\Pi)$ ($\cong \mathbb{Z}^n$ when $\Pi = Mon_n$).
- In general: \leq is described by I_{\leq} and an *order* on monomials in $K\Pi/I_{\leq}$. Surely *orders* on a monoid Π are easy to describe?

Notation

- $u \approx v$ means ($u \leq v$ and $v \leq u$)
- u < v means ($u \le v$ and not $v \le u$)

Definition

 Π a commutative monoid $\rightsquigarrow \mathcal{P}(\Pi) = \{\text{all preorders on }\Pi\} + \text{weakest topology with } \{\leq \mid u < v\} \text{ closed for all } u, v.$

Theorem A

- For any finitely generated commutative monoid Π , $\mathcal{P}(\Pi)$ is spectral, and every point is open in its closure.
- For all $n \ge 1$, $\mathcal{P}(\mathbb{Z}^n)$ has Krull dimension n but $\mathcal{P}(\mathbb{Z}^n_{\ge 0})$ has infinite Krull dimension.

Definition

A \mathbb{Q} -constructible set in \mathbb{R}^n is a set of the form $A = S \setminus H$ with S semi-algebraic over \mathbb{Q} and H a countable union of hyperplanes through 0 defined over \mathbb{Q} .

Theorem B

For any finitely generated commutative monoid Π , there exist \mathbb{Q} -constructible sets $A_1 \subseteq \mathbb{R}^{n_1}$, $A_2 \subseteq \mathbb{R}^{n_2}$, ... and continuous maps $\varphi_i : A_i \to \mathcal{P}(\Pi)$ such that $\mathcal{P}(\Pi) = \bigcup_i \operatorname{im}(\varphi_i)$.

Theorem C

There exists an algorithm that on input Π and a finite boolean combination of basic closed sets $\{ \le | u < v \} \subseteq \mathcal{P}(\Pi)$ decides whether that combination is empty.

Definition

- A Π -set S is a set with a map $\Pi \times S \to S$, $(u, s) \mapsto us$ s.t. 1s = s and (uv)s = u(vs); S is fin. gen. if $S = \bigcup_{i=1}^k \Pi s_i$.
- A *preorder* on S: $s \le t \Rightarrow us \le ut$. (no preorder on Π)

Theorems A,B,C hold for the space $\mathcal{P}(S)$ of preorders on S, for any f.g. commutative monoid Π and any f.g. Π -set S.

Note: $\Pi = \text{Mon}_n$, $S = \text{Mon}_n \times \{1, ..., m\} \rightsquigarrow \mathcal{P}(S) = \{\text{monomial preorders for the free module } K[x_1, ..., x_n]^m\}.$

Rest of this talk:

1. the case where Π is a group (generalisation of Robbiano's Theorem to Π -sets); and 2. the monoid case.

Setting: Π a f.g. abelian group and S a f.g. Π -set.

Proposition

 \leq on S nontrivial $\rightsquigarrow \exists f : \Pi \rightarrow \mathbb{R}$ homo, $g : S \rightarrow \mathbb{R}$ nonconstant s.t. g(us) = f(u) + g(s) and $s \leq t \Rightarrow g(s) \leq g(t)$.

Induction: $\Pi' := \ker(f), \ X \subseteq \mathbb{R}$ finite set of $\operatorname{im}(f)$ -coset representatives in $\operatorname{im}(g), \ S_X := g^{-1}(x) \leadsto \le \text{is determined}$ by g and $\le |_{S_X}$ on the Π' -sets S_X for $x \in X$.

 \rightarrow Get a *preotree* for \leq : vertex x labelled by a subgroup $\Pi_X \subseteq \Pi$ and a f.g. Π_X -set S_X , along with *numerical data* (f_X, g_X) . Π', S_X, f_X, g_X Π', S_Y

Theorem [DMK, Rust-Reid 97,...]: Every preorder on S comes from a preotree with numerical data, and vice versa.

Setting: Π a f.g. commutative monoid, S a f.g. Π -set.

Groupifying

 $\Pi \to Gr(\Pi)$: formally invert all elements (e.g. $\mathbb{Z}_{>0}^n \to \mathbb{Z}^n$)

 $S \to Gr(S)$: universal Π -equivariant map to a $Gr(\Pi)$ -set

Proposition: The pull-back $\mathcal{P}(Gr(S)) \to \mathcal{P}(S)$ is a homeomorphism with its image, a retract of $\mathcal{P}(S)$ via $\leq \mapsto \leq'$, the coarsening of \leq defined by $s \leq' t \Leftrightarrow \exists u \in \Pi : us \leq ut$.

Example

$$egin{aligned} \Pi &= \mathcal{S} = \mathbb{Z}_{\geq 0} \ & \operatorname{Gr}(\Pi) &= \operatorname{Gr}(\mathcal{S}) = \mathbb{Z} \end{aligned}$$

Example: ≤ on Mon₂

$$x^{i}y^{j} \leq x^{k}y^{l} \Leftrightarrow$$

 $i+j < k+l$ or
 $i+j = k+l$ and $i > k$ or
 $i+j = k+l$ and $x^{i}y^{j}, ..., x^{k}y^{l}$ purple

Proposition

 \leq on S with coarsening \leq' \rightsquigarrow $∃\Pi$ -stable $T \subseteq S$ s.t.

- $\forall s \in S \exists u \in \Pi : us \in T$
- T intersects each \approx' -class either in \varnothing or in a single \approx -class.

T is an asymptotic range for \leq .

Proposition: S a f.g. Π -set, \leq preorder on S, coarsening $\leq' \leadsto \exists$ *finite* Π -set X, a Π -equivariant map $\varphi: S \to X$ & a partial order \preceq on X, s.t.:

- $s \approx' t \Rightarrow \varphi(s), \varphi(t)$ are comparable w.r.t. \leq ;
- each stabiliser Π_X is a f.g. submonoid of Π with strictly fewer generators, except that corresponding to T;
- each $S_X := \varphi^{-1}(x)$ is a f.g. Π_X -set;
- $s \le t \Leftrightarrow$ s <' t or $s \approx' t$ and $\varphi(s) \prec \varphi(t)$ or $s \approx' t$ and $\varphi(s) = \varphi(t) =: x$ and then s < t in S_x .

$$|X| = 17$$

Theorem

Any preorder \leq on the Π -set S is given by a finite tree, in which vertex x is labelled by:

- a f.g. submonoid $\Pi_X \subseteq \Pi$,
- a f.g. Π_X -set $S_X \subseteq S$,
- a partial order \leq_X on the children of X,
- a preotree τ_X for the $Gr(\Pi_X)$ -set $Gr(S_X)$, and
- numerical data for τ_X .

Conversely, the locus of numerical data $(p_X)_X$ that gives rise to a preorder on S is a countable union of \mathbb{Q} -admissible sets.

→ Theorem B

For any finitely generated commutative monoid Π , there exist \mathbb{Q} -admissible sets $A_1 \subseteq \mathbb{R}^{n_1}, A_2 \subseteq \mathbb{R}^{n_2}, ...$ and continuous maps $\varphi_i : A_i \to \mathcal{P}(\Pi)$ such that $\mathcal{P}(\Pi) = \bigcup_i \operatorname{im}(\varphi_i)$.

Question

 \exists ? a preorder on Mon₉ s.t.

 $\max\{x_1x_2x_3, x_4x_5x_6, x_7x_8x_9\} < \min\{x_1x_4x_7, x_2x_5x_8, x_3x_6x_9\}$

Our algorithm in Theorem C has not been implemented . . .

Theorem [Bou 15]

There is a *communication ideal* $I \subseteq Mon_9$ (i.e., the set $\{(I:u) \mid u \in Mon_9\}$ is totally ordered by inclusion), which contains all mons on the right but none of those on the left.

Now pull back \subseteq along $u \mapsto (I : u) \rightsquigarrow yes!$

Consequence: not all closed points in $\mathcal{P}(\mathsf{Mon}_9)$ are *orders*. What is the smallest value of 9 for which this holds?

Köszönöm szépen!