The space of monoid preorders

N s
N

ty of Bern _

Jan Draisma

\

iversi

n
{ =

Un

-

1

Ongoing WOrk W

e
O
(d)p)
e
qv]
)
C
{©)
€
0p)
©
C
TSl ang g &
e
(4b)
O
O
=
(4b)
g,
—
@)
(0))
@)

Targu Mures
September 2025

N 1)



A guestion from universal algebra 2.

Question [Metcalfe]
3? an algorithm that solves systems such as

max{ X{ Xo X3, X4 X5Xg, X7XgXg } < Min{XqX4X7, XoX5Xg, X3XgXg }
a 9
... for the unknown preorder < on {x | a € Z%,}7

Setting
(M, -) : commutative monoid with neutral element 1

Definition

A preorder < on I1:

e(U<vandv<w)=u<w

o U< U we do not require:
eu<vorv<u e U<vandv<UuU)=uU=vV
o U< V=uw< vw o1 < u



Examples and Robbiano’s theorem 3.5

e (M,-) = (RX,+) and u <jgx vV :& u = v or the first
nonzero entry of u — vis < 0.

e o : M — M a homomorphism, <’ a preorder on M’ ~~
<:=p*(<"Ybyu<v:ep(u) < p(v)is apreorder on I.

Theorem [Robbiano, 1985]
For any preorder < on (Z", +) there exist k < n and a ho-
momorphism p : Z" — RX such that <= p*(<|ex)-

< means further up the rainbow here: c o o
Question g | : : :
Characterisation of preorders 1 x x2-..

on Mon, a la Robbiano?



The role of monomial and binomial ideals 4

Definition: An idealin I'1 is a subset / with 1/ C T1.
e For 1 = Mon,, ~» monomial ideals in KIN = K|[xq, ..., Xn].

o If 1 < all u €I, then each up-set is an ideal; conversely,
can construct positive preorders from certain ideals.

Important observation

<apreorderon ~ I := ({u—v | u<v < ul)kisa
binomial ideal in KT1 (in particular finitely generated).

o If /- is prime, then < is the pull-back of a preorder on the
groupification Gr(IM) (= Z" when T = Monj,).

e In general: < is described by /<« and an order on mono-
mials in KT1/l<. Surely orders on a monoid 1 are easy to
describe?

6



The space of preorders 5.

Notation
e U~ vmeans (U< vandv < U)
e U< vmeans (U < vandnot v <u)

Definition
M a commutative monoid ~» P (M) = {all preorders on N} +
weakest topology with {<| u < v} closed for all u, v.

Example .;". ."., (Ur, tp) < (v1,\2) <=
[1 = Zz: .o :\

S, Uy + U < Vi + Vo

PUT <lex PVT with p = (:: _11>

V3-uy— U <V3-vi — o



Spectrality 6

Theorem A

e For any finitely generated commutative monoid I, P(I) is
spectral, and every point is open in its closure.

e Forall n> 1, P(Z") has Krull dimension n but P(ZZ,)
has infinite Krull dimension.

Example
P(Z>o) :

O0>1~2~3~--- D<1~2~83=~~---

0>1>2~3~--- ‘ ‘-O<1<2%3%...

0>1>2>3>..- ¢ * 0<1<2<3< -




Main results 7.

Definition

A Q-constructible setin R" is a set of the form A = S\ H
with S semi-algebraic over Q and H a countable union of
hyperplanes through 0 defined over Q.

Theorem B

For any finitely generated commutative monoid I'1, there exist
Q-constructible sets Ay € R™, A, C R™, ... and continuous
maps ¢, : A; — P(I) such that P(MN) = UY;im(g;).

Theorem C

There exists an algorithm that on input 'l and a finite boolean
combination of basic closed sets {<| u < v} C P(N) de-
cides whether that combination is empty.



(Necessary) generalisation 8-

Definition
e All-setSisasetwithamapll xS — S, (u,s) — uss.t.
1s = sand (uv)s = u(vs); Sis fin. gen. it S = J¥_, Ns;.

e A preorderon S: s <t = us < ut. (no preorder on [1)

Theorems A,B,C hold for the space P(S) of preorders on S,
for any f.g. commutative monoid Il and any f.g. l-set S.

Note: 1 = Mon,, S = Mon, x {1,...,m} ~ P(S) =
{monomial preorders for the free module K|xq, ..., x| }.

Rest of this talk:
1. the case where I1 is a group (generalisation of
Robbiano’s Theorem to l-sets); and 2. the monoid case.



1. Generalising Robbiano’s theorem to l-sets .6

Setting: 1 a f.g. abelian group and S a f.g. l1-set.

Proposition
< on S nontrivial ~» 3f : [ — IR homo, g : S — R noncon-
stant s.t. g(us) = f(u) +g(s) and s <t = g(s) < g(t).

Induction: 1’ := ker(f), X C R finite set of im(f)-coset
representatives in im(g), Sy := g~ (x) ~» < is determined
by g and < |g, on the '-sets Sy for x € X.

,S,1,9g
~» Get a preotree for <: vertex x labelled by a
subgroup My C Il and a f.g. MNy-set Sy, along
with numerical data (fx, gx). M, Sv.fox /% .S,
Theorem [DMK, Rust-Reid 97,...]: Every preorder on S

comes from a preotree with numerical data, and vice versa.



2.a. Groupification 10-

Setting: 1 a f.g. commutative monoid, S a f.g. l1-set.

Groupifying
M — Gr(M): formally invert all elements (e.g. ZZ, — Z")
S — Gr(S): universal lM-equivariant map to a Gr(I1)-set

Proposition: The pull-back P(Gr(S)) — P(S) is a homeo-
morphism with its image, a retract of P(S) via <—<’, the
coarsening of < definedby s <' t < Ju e N : us < ut.

<’[riv
E | P(Z>0) i
-5 7., | ® e
Gr(N) = Gr(S) =Z . .
P(Z) - :



2.b. The asymptotic range -

Example: < on Mon;
lej < Xkyl PN

L4 L4 4 24

i+j<k+1lor o e "
i+j=k+1landi > k or .
i+j=k+land x'y/, ..., xXy' purple y -\:
X X T
Proposition N & % e & %0
< on S with coarsening <’ ’\“x\"~~."‘~.f"~.f"~.f'
~+ dl-stable T C S s.t. ’\“x.:‘\“\.:‘\.:'\,:'
eVscSueN:useT e
J ’C\ ®
e

e T intersects each ~’-class
either in @ or in a single ~-class. \
@

T i1s an asymptotic range for <.




2.c. Homomorphisms to finite I-sets 2.5

Proposition: S a f.g. ll-set, < preorder on S, coarsening
<" ~~ 7 finite N-set X, a MN-equivariantmap ¢ : S - X & a
partial order < on X, s.t.:

o s~'t= ¢(s), ¢(t) are comparable w.r.t. <;

e cach stabiliser Iy is a f.g. submonoid of T with strictly
fewer generators, except that corresponding to T;

T

e cach Sy := ¢~ '(x) is af.g. MNy-set; .50

cecio Aty

s<'tor e e e e

s~'tand ¢(s) < ¢(t) or o "o

s~'tand ¢(s) = ¢(t) =: x e
and then s < tin Sy.




2. The monoid case 13-

Theorem
Any preorder < on the ll-set S is given by a finite tree, in

which vertex x is labelled by: n s
e a f.g. submonoid Ny C [T, ’
e af.g. [y-set Sy C S, .

e a partial order <, on the children of x, ' SX,' N = M. S
e a preotree Ty for the Gr(My)-set Gr(Sy), and.’ e
e numerical data for 7.

Conversely, the locus of numerical data (pyx)x that gives rise
to a preorder on S is a countable union of Q-admissible sets.

~ Theorem B

For any finitely generated commutative monoid I1, there exist
Q-admissible sets A; € R™, A, C R™, ... and continuous
maps ¢, : A; — P(I) such that P(MN) = UY;im(g;).



Wrapping up 4

Question
3?7 a preorder on Mong s.t.
max{ X{ Xo X3, X4 X5Xg, X7XgXg } < Min{XqX4X7, XoX5Xg, X3XgXg }

Our algorithm in Theorem C has not been implemented . . .

Theorem [Bou 15]
There Is a communication ideal | C Mong (i.e., the set
{(I: u) | u e Mong} is totally ordered by inclusion), which
contains all mons on the right but none of those on the letft.

Now pull back C along u — (/: u) ~ yes! e -

Consequence: not all closed points in P(Mc;ng) are orders.
What is the smallest value of 9 for which this holds?

Koszonom szépen!
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