
1. Symmetric ideals according to Aschenbrenner and Hillar

We will prove the following theorem.

Theorem 1.1. Let G = Sym(N) act on the algebra R = C[x0, x1, . . .] by permuta-
tions. Then any G-stable ideal I of R is finitely generated as G-stable ideal, that
is, there exist finitely many f1, . . . , fk ∈ I such that I is the smallest G-stable ideal
containing f1, . . . , fk.

Background: Hilbert’s basis theorem says that any ideal in C[x0, . . . , xn] is
finitely generated. But ideals in C[x0, x1, . . .] need not be. The above theorem says
that symmetric ideals are in a sense finitely generated. We say that C[x0, x1, . . .] is
G-Noetherian.

The proof is due to Matthias Aschenbrenner and Christopher J. Hillar. They
prove something more general, but the main arguments become clear from the proof
below.

Definition 1.2. For any map π : N → N and r ∈ R we write πr for the image of
r under the homomorphism R → R sending xi to xπi.

Definition 1.3. We define an order � on monomials in x0, x1, . . . as follows: it is
the smallest relation on monomials satisfying 1 � 1 and

u � v ⇒ u � xb
0σv and xa

0σ(u) � xb
0σ(v)

for all u, v and 0 ≤ a ≤ b. Here, as in the rest of this talk, σ : N → N, i 7→ i + 1.

Definition 1.4. For u a monomials we write |u| for the largest i such that xi

appears in u. For u = 1 we write |u| = −∞.

Lemma 1.5. u � v if and only if there is an increasing map π : {0, . . . , |u|} → N
such that πu divides v.

Proof. The implication ⇒ follows by induction: if π does the trick for u � v, then
σπ, defined on {0, . . . , |u|}, does the trick for u � σv, and the map defined by

i 7→

{
π(i− 1) + 1 if i > 0, and
0 if i = 0

does the trick for xa
0u � xb

0v.
For the implication ⇐, from π one easily reconstructs a sequence of relations

that deduce u � v from 1 � 1. �

Remark 1.6. This lemma implies that � is a partial order.

Proposition 1.7. The partial order � does not have infinite antichains.

Proof. Suppose that there do exist infinite antichains. Then there exists an infinite
never-increasing sequence

u1, u2, . . . , un, . . . ,

that is, a sequence such that ui 6� uj for all i < j. Moreover, we may take such a
sequence with the additional property that |un| is minimal among all un such that
u1, . . . , un can be extended to an infinite never-increasing sequence.

For all i let ai be the exponent of x0 in ui. Now there exists an infinite sequence
1 ≤ i1 < i2 < . . . such that

ai1 ≤ ai2 ≤ . . .
1
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(take i1 such that ai1 is minimal, then take i2 > i1 such that ai2 is minimal, etc.).
But then consider the antichain

u1, . . . , ui1−1, ui1 , ui2 , . . . .

Let α be the homomorphism that sends xi+1 to xi for i ≥ 0 and x0 to 1. Consider
the sequence

u1, . . . , ui1−1, α(ui1), α(ui2), . . .

By minimality of |ui1 |, this sequence is not never-increasing. Hence either there
exist i < i1 and j ≥ 1 such that

ui � α(uij ),

or there exist 1 ≤ j ≤ k such that

α(uij ) � α(uik
).

But in the first case we have
ui � uij

by the first inductive property of �, and in the second case we have

uij � uik

by the second inductive property and the fact that aij
≤ aik

. We thus arrive at a
contradiction, hence the proposition is proved. �

Now we can prove the theorem.

Proof of Theorem 1.1. Let I be a G-stable ideal. To any f ∈ R we associate its
leading monomial lm(f) in the lexicographic order, where x1 < x2 < . . .. So for
instance x3

1 < x1x2 < x3, and x3 is the leading monomial in x3
1 + x1x2 + x3. Now

consider the set M of all �-minimal elements of the set {lm(f) | f ∈ I}. This is an
antichain by definition, hence finite by the proposition. Hence there exist (monic)
f1, . . . , fk ∈ I such that M = {lm(f1), . . . , lm(fk)}. We claim that I equals the
smallest G-stable ideal J containing f1, . . . , fk.

Indeed, suppose that I contains a (monic) counterexample f 6∈ J . We may
assume that lm(f) lexicographically minimal among counterexamples (since the
lexicographic order is a well-order). By construction, there exists an i such that
lm(fi) � lm(f). Set n := |lm(fi)| and let π : {1, . . . , n} → N be increasing such
that π(lm(fi))|lm(f); say lm(f) = uπ(lm(fi)). Then π(fi) ∈ J by G-stability, and

f ′ := f − uπ(fi) 6∈ J.

We claim that the lm(f ′) is lexicographically smaller than lm(f), contradicting the
minimality of the latter. But this is clear from lm(π(fi)) = π(lm(fi)), so that
lm(uπ(fi)) = uπ(lm(fi)) = lm(f). �

2. G-Noetherianity of some modules

Let the group G = Sym(N) act on the ring R = K[yij |i 6= j] by permuting
the indices simultaneously. It is easy to see that this ring is not G-Noetherian.
However, let R≤d denote the G-module of polynomials of degree at most d.

Proposition 2.1. The G-module R≤d is Noetherian, i.e., every G-submodule of it
is finitely generated.
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Proof. We proceed as above: we define two partial orders on monomials in R. The
first one has u � v if and only if there is a strictly increasing map π : {1, . . . , |u|} →
N such that πu = v. Here |u| denotes the maximum among all indices appearing
in variables in u. The second order is lexicographic, where the largest index of a
variable is most significant, and for definiteness yij < yji if i < j. So for instance
y31 > y13 > y21y12 > y4

12.
We claim that the monomials in R≤d do not contain an infinite antichain with

respect to �. Indeed, if such an antichain exists, then since there are only finitely
many G-orbits of monomials in R≤d, there exists an antichain C contained in some
G-orbit. Fix u in this G-orbit for which the indices appearing in its variables are
precisely the numbers 1, . . . , n. For any element v of Gu construct a monomial m(v)
in the variables x1, x2, . . . as follows: let πv be a bijection from {1, . . . , n} to the set
of indices appearing in v, such that πvu = v. Then set m(v) := πv(x1

1x
2
2 · · ·xn

n). In
particular, if we choose πu = id, then m(u) = x1x

2
2 · · ·xn

n. Now m is an injection
from Gu to monomials in x1, x2, . . ., hence it maps C to an infinite set. This
cannot be an antichain in the order � on monomials in the xi introduced earlier,
hence m(v) � m(w) for some v, w ∈ C. Hence there exists an increasing map
τ : {1, . . . , |v|} → N such that τm(v) = m(w). But then also τv = w, hence v � w.

Now let P be a G-submodule of R≤d. Denote by M the set of all �-minimal
elements of {lm(f) | f ∈ P}. Then M is an antichain, and finite by the above.
Hence there exist (monic) f1, . . . , fk ∈ M such that M = {lm(f1), . . . , lm(fk)}. We
claim that P equals the G-module Q generated by the fi.

Indeed, suppose that P contains a (monic) counterexample f 6∈ Q. We may
assume that lm(f) lexicographically minimal among counterexamples (since the
lexicographic order is a well-order). By construction, there exists an i such that
lm(fi) � lm(f). Set n := |lm(fi)| and let τ : {1, . . . , n} → N be increasing such
that τ(lm(fi)) = lm(f). Then τ(fi) ∈ Q by G-stability, and

f ′ := f − τ(fi) 6∈ Q.

We claim that the lm(f ′) is lexicographically smaller than lm(f), contradicting the
minimality of the latter. But this is clear from lm(τ(fi)) = τ(lm(fi)) = lm(f). �
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