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Definition. Strassen]

The subrank of fis Q(f) := max{r | da, B,y : yofo(ax B)
is the Hadamard product /, : K" x K" — K'}.

Remark. « and § are injective, -y is surjective, so
Q(f) < min{dim(U),dim(V),dim(W)}.

Example. Q(f) =0« f=0,and Q(/;) =r.
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Relation to ordinary tensor rank

f

UxYV > W
axp ) [ a() =max{r|..}
KT s KT . K' subrank
(a,b) — axb
Ux V ' - W
uxp | (2 Yy R(H) =min{r| ..}
K™ x K’ - K’ rank
(a,b) — axb

Remark. If f concise (surjective, zero radical), then
Q(f) < min{dim(U),dim(V),dim(W)}
< max{dim(U),dim(V),dim(W)} < R(f).
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Questions ..

e How does one compute Q(f)?

(No idea. Finite task when |K| < co, Buchberger algorithm
when K = K, quantifier elimination for K = IR. Computable
when K = Q7)

e Behaviour under field extensions?

FUXV S Wetf U xV, =W,
Q(f) =: Qk(f) < Q(f); how about Qk(f) > F(Q.(f.))?

Example. K =R, U=V =W = C as IR-space,
f: C x C — C scalar multiplication as R-bilinear map.

Then 1 < Qr(f) < 2andinfact Q(f) = 1 since f(u,v) #0
when u, v # 0. But Qc(fc) = 2 due to C ®r C =2 C2.
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Questions, continued 5.4

e Subrank of a sufficiently general f: U x V — W?
e Variant of the last question for border subrank (K = K):
f

UxV > W
“tX,BtT l’)’t
K" x K" » K

(a,b) - axbfort—0
Definition. The border subrank of f is
Q(f) L= max{r ‘ Hzxt,,Bt, Yt - |imt%0 Yt © fo (Dét X ,Bt) — /r}

Remark ¢ Q(f) < Q(f) < min{dim(U),dim(V),dim(W)}
o {f| Q(f) < r}istypically not closed!
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Theorem | (Derksen-Makam-Zuiddam]

For K =Kand U=V = W = K" and f sufficiently
general, Q(f) ~ v/3n.

Remark. For order-d tensors, the answer is ~ Cn'/(@=1),
Exact values were found by Pielasa-Safranek-Shatsila!

Proof sketch of < e After acting with GL, x GL, x GLj, f

with Q(f) > r looks like f((a1, @), (by, bo)) = (a1 * by, ...
r n—r

e The space of such f has dim n® — r3
and is stabilised by a group of dim 2r +3(n— r)n.

e So {f| Q(f) > r} has dim r
<m—-r34+3n>-2r—3(n—r)n n—r
= n° — r(r® —3n+ 2) ~ density requires r < v/3n— 2.
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Theorem [Biaggi-Chang-D-Rupniewski]
For K =Kand U=V =W = K" and f sufficiently
general, Q(f) ~ Cv/n, and C > 2(> /3)

Remarks
e Before, only < n— 1 was known (Gesmundo).

e For <, need necessary conditions on f s.t. I, € (GL})f:

Generalised Hilbert-Mumford Criterion [B-C-D-R]
Let a reductive group G acts on an affine variety X and let
p,g € Xwithge Gp. Thendge Ggand A : K* — G:

~

lim;_o A(t)p = lim;_e A(1)Q.
e Take X = U V® Wand p:= f(general)and q := I, ~
decompose X = X_g P Xo & X using A.



Generic border subrank

o lim; o A(f)g exists ~ g € Xcg NGL] - Iy ~
dlm(Xgo) > (r/3)3

- 1



Generic border subrank

o lim; o A(f)g exists ~ g € Xcg NGL] - Iy ~
dlm(Xgo) > (r/3)3

o lim; .o A(t)f exists ~ f € X>o ~~» f depends on at most
n —(r/3)° +r(3r —2) +6r(n— r) parameters.



Generic border subrank

o lim; o A(f)g exists ~ g € Xcg NGL] - Iy ~
dlm(Xgo) > (r/3)3

o lim; .o A(t)f exists ~ f € X>o ~~» f depends on at most
n3 — (r/3)° + r(3r —2) +6r(n— r) parameters.

e So density of {Q(f) > r} implies r < C+v/n.



Generic border subrank

o lim; o A(f)g exists ~ g € Xcg NGL] - Iy ~
dlm(Xgo) > (r/3)3

o lim; .o A(t)f exists ~ f € X>o ~~» f depends on at most
n3 — (r/3)° + r(3r —2) +6r(n— r) parameters.

e So density of {Q(f) > r} implies r < C+v/n.

e For >, we show JA : limy_g A(t)f € C:\L‘?7 Ar,r ~ 24/n.
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~ Q(f@g) > Q(f) + Q(g) and Q(f® g) > Q(f) + Q(9).

Observation [Derksen-Makam-Zuiddam]
This can be (very) strict! Take f: K" x K" — K™ general,
so that g := I, — f is also general. Then
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Definition. f: UXx V —- W, g:AXxB—-C~f®dg:
(UdA) x (Va B) — (W C) is their direct sum.
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~ Q(f@g) > Q(f) + Q(g) and Q(f® g) > Q(f) + Q(9).

Observation [Derksen-Makam-Zuiddam]
This can be (very) strict! Take f: K" x K" — K™ general,
so that g := I, — f is also general. Then

2n> Q(f®g) > Q(f+9g) = nbut Q(f) + Q(g) ~ 2v3n.
Same applies to Q, just with 2C+/n from B-C-D-R.
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Typical subranks fo-

Definition. r is a typical subrank for real bilinear maps f :
UxV — Wif {f| Q(f) = r} O a Euclidean-open set.

Example. For U = V = W = IR? the typical Q are 1, 2.
A>0Q=R=2

Theorem [Biaggi-D-Eggleston] 0

For U=V = W = R* the A=0 O
typical ranks are 2, 3. £<0Q@=1R=3
Proof. ¢ 3 = /3 -4 — 2, use Derksen-Makam-Zuiddam.

e Any sufficiently general f : R? x R? — R3 has Q(f) = 2.

e Any f near the multiplication - of H has Q(f) =2 < 3: if
= 3, then dim(y(a(e1) -im(B))) > 2, contradiction.

Theorem. {typical subranks} form an interval (uses
Bernardi-Blekherman-Ottaviani).
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Real versus complex subrank -

Have seen an example with Qg (f) = 1, Qc(fc) = 2, namely,
scalar multiplication C x C — C as real bilinear map.

Additivity does hold for copies of this tensor:

Theorem [B-D-E]
Real rank of C" x C" — C",(a,b) — ax b = (a;b;); is n.

(But 3 nontrivial «, B, -y, e.g. for n = 3 can take
x = B : R® — C3 general, and suitable +.)

Note. Q¢ (fc) = 2n here.

Proof is a nontrivial induction on n; for an arbitrary division

algebra A over K we get Q(uan) < dimg(A) . n.
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Theorem
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e Can someone please do better?

(C" shows that Qg (f) can be Q¢ (fc).)
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Some open questions f2-

Theorem [B-D-E]
For any real bilinear map f, we have Q(f) > /Qc(fc).

e Can someone please do better?

(C" shows that Qg (f) can be Q¢ (fc).)

When r = 1/3n — 2 is an integer, for sufficiently general f
there are finitely many «, B, v with yo fo (a x B) = I, by
Pielasa-Safranek-Shatsila.

o How many? (or <)

e How many components does {f | Q(f) > r} have?

Thank you!
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