Subranks of bilinear maps

(Joint with Biaggi-Chang-Rupniewski and with Biaggi-Eggleston)

Jan Draisma University of Bern

$$U \times V \longrightarrow W$$

[Strassen]

Definition.

The *subrank* of f is $Q(f) := \max\{r \mid \exists \alpha, \beta, \gamma : \gamma \circ f \circ (\alpha \times \beta) \}$ is the Hadamard product $I_r : K^r \times K^r \to K^r\}$.

[Strassen]

Definition.

The *subrank* of f is $Q(f) := \max\{r \mid \exists \alpha, \beta, \gamma : \gamma \circ f \circ (\alpha \times \beta) \}$ is the Hadamard product $I_r : K^r \times K^r \to K^r\}$.

Remark. α and β are injective, γ is surjective, so $Q(f) \leq \min\{\dim(U), \dim(V), \dim(W)\}.$

[Strassen]

Definition.

The *subrank* of f is $Q(f) := \max\{r \mid \exists \alpha, \beta, \gamma : \gamma \circ f \circ (\alpha \times \beta) \}$ is the Hadamard product $I_r : K^r \times K^r \to K^r\}$.

Remark. α and β are injective, γ is surjective, so $Q(f) \leq \min\{\dim(U), \dim(V), \dim(W)\}.$

Example. $Q(f) = 0 \Leftrightarrow f = 0$, and $Q(I_r) = r$.

Relation to ordinary tensor rank

$$\begin{array}{c|c}
U \times V & \xrightarrow{f} & W \\
\alpha \times \beta & & \downarrow \gamma & Q(f) = \max\{r \mid ...\} \\
K^r \times K^r & \xrightarrow{(a,b) \mapsto a * b} & K^r
\end{array}$$

Relation to ordinary tensor rank

$$U \times V \xrightarrow{f} W$$

$$\alpha \times \beta \uparrow \qquad \qquad \downarrow \gamma \quad Q(f) = \max\{r \mid ...\}$$

$$K^{r} \times K^{r} \xrightarrow{(a,b) \mapsto a*b} W$$

$$\alpha \times \beta \downarrow \qquad \qquad \downarrow \gamma \quad R(f) = \min\{r \mid ...\}$$

$$K^{r} \times K^{r} \xrightarrow{(a,b) \mapsto a*b} K^{r}$$

$$U \times V \xrightarrow{f} W$$

$$\alpha \times \beta \uparrow \qquad \qquad \downarrow \gamma \quad Q(f) = \max\{r \mid ...\}$$

$$K^{r} \times K^{r} \xrightarrow{(a,b) \mapsto a*b} W$$

$$\alpha \times \beta \downarrow \qquad \qquad \downarrow \gamma \quad R(f) = \min\{r \mid ...\}$$

$$K^{r} \times K^{r} \xrightarrow{(a,b) \mapsto a*b} K^{r}$$

Remark. If f concise (surjective, zero radical), then $Q(f) \le \min\{\dim(U), \dim(V), \dim(W)\}\$ $\le \max\{\dim(U), \dim(V), \dim(W)\} \le R(f)$.

Questions

4 - 1

• How does one *compute* Q(f)?

• How does one *compute* Q(f)?

(No idea. Finite task when $|K| < \infty$, Buchberger algorithm when $K = \overline{K}$, quantifier elimination for $K = \mathbb{R}$. Computable when $K = \mathbb{Q}$?)

- How does one *compute* Q(f)?
- (No idea. Finite task when $|K| < \infty$, Buchberger algorithm when $K = \overline{K}$, quantifier elimination for $K = \mathbb{R}$. Computable when $K = \mathbb{Q}$?)
- Behaviour under field extensions?

- How does one *compute* Q(f)?
- (No idea. Finite task when $|K| < \infty$, Buchberger algorithm when $K = \overline{K}$, quantifier elimination for $K = \mathbb{R}$. Computable when $K = \mathbb{Q}$?)
- Behaviour under field extensions?

$$f: U \times V \to W \leadsto f_L: U_L \times V_L \to W_L$$

 $Q(f) =: Q_K(f) \leq Q_L(f_L)$; how about $Q_K(f) \geq F(Q_L(f_L))$?

• How does one *compute* Q(f)?

(No idea. Finite task when $|K| < \infty$, Buchberger algorithm when $K = \overline{K}$, quantifier elimination for $K = \mathbb{R}$. Computable when $K = \mathbb{Q}$?)

Behaviour under field extensions?

$$f: U \times V \rightarrow W \rightsquigarrow f_L: U_L \times V_L \rightarrow W_L$$

 $Q(f) =: Q_K(f) \leq Q_L(f_L)$; how about $Q_K(f) \geq F(Q_L(f_L))$?

Example. $K = \mathbb{R}$, $U = V = W = \mathbb{C}$ as \mathbb{R} -space, $f : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ scalar multiplication as \mathbb{R} -bilinear map.

Then $1 \le Q_{\mathbb{R}}(f) \le 2$ and in fact Q(f) = 1 since $f(u, v) \ne 0$ when $u, v \ne 0$. But $Q_{\mathbb{C}}(f_{\mathbb{C}}) = 2$ due to $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C}^2$.

• Subrank of a sufficiently general $f: U \times V \rightarrow W$?

Questions, continued

- Subrank of a sufficiently general $f: U \times V \rightarrow W$?
- Variant of the last question for *border* subrank $(K = \overline{K})$:

$$U \times V \longrightarrow W$$

$$\alpha_t \times \beta_t \uparrow \qquad \qquad \downarrow \gamma_t$$

$$K^n \times K^n \longrightarrow K^n$$

$$(a, b) \rightarrow a * b \text{ for } t \rightarrow 0$$

- Subrank of a sufficiently general $f: U \times V \rightarrow W$?
- Variant of the last question for *border* subrank $(K = \overline{K})$:

$$U \times V \longrightarrow W$$

$$\alpha_t \times \beta_t \uparrow \qquad \qquad \downarrow \gamma_t$$

$$K^n \times K^n \longrightarrow K^n$$

$$(a, b) \rightarrow a * b \text{ for } t \rightarrow 0$$

Definition. The border subrank of f is

$$\underline{Q}(f) := \max\{r \mid \exists \alpha_t, \beta_t, \gamma_t : \lim_{t \to 0} \gamma_t \circ f \circ (\alpha_t \times \beta_t) = I_r\}.$$

- Subrank of a sufficiently general $f: U \times V \rightarrow W$?
- Variant of the last question for *border* subrank $(K = \overline{K})$:

$$U \times V \longrightarrow W$$

$$\alpha_t \times \beta_t \uparrow \qquad \qquad \downarrow \gamma_t$$

$$K^n \times K^n \longrightarrow K^n$$

$$(a, b) \rightarrow a * b \text{ for } t \rightarrow 0$$

Definition. The border subrank of f is

$$\underline{Q}(f) := \max\{r \mid \exists \alpha_t, \beta_t, \gamma_t : \lim_{t \to 0} \gamma_t \circ f \circ (\alpha_t \times \beta_t) = I_r\}.$$

Remark • $Q(f) \le \underline{Q}(f) \le \min\{\dim(U), \dim(V), \dim(W)\}$ • $\{f \mid \underline{Q}(f) \le r\}$ is typically not closed!

[Derksen-Makam-Zuiddam]

For $K = \overline{K}$ and $U = V = W = K^n$ and f sufficiently general, $Q(f) \approx \sqrt{3n}$.

[Derksen-Makam-Zuiddam]

For $K = \overline{K}$ and $U = V = W = K^n$ and f sufficiently general, $Q(f) \approx \sqrt{3n}$.

Remark. For order-d tensors, the answer is $\approx Cn^{1/(d-1)}$. Exact values were found by Pielasa-Šafránek-Shatsila!

[Derksen-Makam-Zuiddam]

For $K = \overline{K}$ and $U = V = W = K^n$ and f sufficiently general, $Q(f) \approx \sqrt{3n}$.

Remark. For order-d tensors, the answer is $\approx Cn^{1/(d-1)}$. Exact values were found by Pielasa-Šafránek-Shatsila!

Proof sketch of \leq • After acting with $GL_n \times GL_n \times GL_n$, f with $Q(f) \geq r$ looks like $\widetilde{f}((a_1, a_2), (b_1, b_2)) = (\underbrace{a_1 * b_1, ...}_{r}, \underbrace{a_1 * b_1, ...}_{n-r})$.

[Derksen-Makam-Zuiddam]

For $K = \overline{K}$ and $U = V = W = K^n$ and f sufficiently general, $Q(f) \approx \sqrt{3n}$.

Remark. For order-d tensors, the answer is $\approx Cn^{1/(d-1)}$. Exact values were found by Pielasa-Šafránek-Shatsila!

Proof sketch of \leq • After acting with $GL_n \times GL_n \times GL_n$, f with $Q(f) \geq r$ looks like $\widetilde{f}((a_1, a_2), (b_1, b_2)) = (\underbrace{a_1 * b_1, \ldots}_{r-r})$.

• The space of such \tilde{f} has dim $n^3 - r^3$ and is stabilised by a group of dim 2r + 3(n - r)n.

[Derksen-Makam-Zuiddam]

For K = K and $U = V = W = K^n$ and f sufficiently general, $Q(f) \approx \sqrt{3}n$.

Remark. For order-*d* tensors, the answer is $\approx Cn^{1/(d-1)}$. Exact values were found by Pielasa-Šafránek-Shatsila!

Proof sketch of \leq • After acting with $GL_n \times GL_n \times GL_n$, fwith $Q(f) \ge r$ looks like $\tilde{f}((a_1, a_2), (b_1, b_2)) = (a_1 * b_1, ...)$.

- The space of such \tilde{f} has dim $n^3 r^3$ and is stabilised by a group of dim 2r + 3(n-r)n.
- So $\{f \mid Q(f) \geq r\}$ has dim $\leq n^3 - r^3 + 3n^2 - 2r - 3(n-r)n$ $= n^3 - r(r^2 - 3n + 2) \rightsquigarrow \text{density requires } r \leq \sqrt{3n - 2}.$

[Biaggi-Chang-D-Rupniewski]

For $K = \overline{K}$ and $U = V = W = K^n$ and f sufficiently general, $\underline{Q}(f) \approx C\sqrt{n}$, and $C \geq 2(>\sqrt{3})$

[Biaggi-Chang-D-Rupniewski]

For $K = \overline{K}$ and $U = V = W = K^n$ and f sufficiently general, $\underline{Q}(f) \approx C\sqrt{n}$, and $C \geq 2(>\sqrt{3})$

Remarks

• Before, only $\leq n-1$ was known (Gesmundo).

[Biaggi-Chang-D-Rupniewski]

For $K = \overline{K}$ and $U = V = W = K^n$ and f sufficiently general, $\underline{Q}(f) \approx C\sqrt{n}$, and $C \geq 2(>\sqrt{3})$

Remarks

- Before, only $\leq n-1$ was known (Gesmundo).
- For \leq , need necessary conditions on f s.t. $I_r \in (GL_n^3)f$:

[Biaggi-Chang-D-Rupniewski]

For $K = \overline{K}$ and $U = V = W = K^n$ and f sufficiently general, $\underline{Q}(f) \approx C\sqrt{n}$, and $C \geq 2(>\sqrt{3})$

Remarks

- Before, only $\leq n-1$ was known (Gesmundo).
- For \leq , need necessary conditions on f s.t. $I_r \in (GL_n^3)f$:

Generalised Hilbert-Mumford Criterion

[B-C-D-R]

Let a reductive group G acts on an affine variety X and let $p, q \in X$ with $q \in \overline{Gp}$. Then $\exists \widetilde{q} \in Gq$ and $\lambda : K^* \to G$:

$$\lim_{t\to 0} \lambda(t)p = \lim_{t\to \infty} \lambda(t)\widetilde{q}.$$

[Biaggi-Chang-D-Rupniewski]

For $K = \overline{K}$ and $U = V = W = K^n$ and f sufficiently general, $\underline{Q}(f) \approx C\sqrt{n}$, and $C \geq 2(>\sqrt{3})$

Remarks

- Before, only $\leq n-1$ was known (Gesmundo).
- For \leq , need necessary conditions on f s.t. $I_r \in (GL_n^3)f$:

Generalised Hilbert-Mumford Criterion

B-C-D-R

Let a reductive group G acts on an affine variety X and let $p, q \in X$ with $q \in \overline{Gp}$. Then $\exists \widetilde{q} \in Gq$ and $\lambda : K^* \to G$:

$$\lim_{t\to 0} \lambda(t)p = \lim_{t\to \infty} \lambda(t)\widetilde{q}.$$

• Take $X := U \otimes V \otimes W$ and p := f (general) and $q := I_r \rightsquigarrow$ decompose $X = X_{<0} \oplus X_0 \oplus X_{>0}$ using λ .

Generic border subrank

• $\lim_{t\to 0} \lambda(t)\widetilde{q}$ exists $\leadsto \widetilde{q} \in X_{\leq 0} \cap \operatorname{GL}_n^3 \cdot I_r \leadsto \dim(X_{\leq 0}) \geq (r/3)^3$.

Generic border subrank

- $\lim_{t\to 0} \lambda(t)\widetilde{q}$ exists $\leadsto \widetilde{q} \in X_{\leq 0} \cap \operatorname{GL}_n^3 \cdot I_r \leadsto \dim(X_{\leq 0}) \geq (r/3)^3$.
- $\lim_{t\to 0} \lambda(t) f$ exists $\leadsto f \in X_{\geq 0} \leadsto f$ depends on at most $n^3 (r/3)^3 + r(3r-2) + 6r(n-r)$ parameters.

Generic border subrank

- $\lim_{t\to 0} \lambda(t)\widetilde{q}$ exists $\leadsto \widetilde{q} \in X_{\leq 0} \cap \operatorname{GL}_n^3 \cdot I_r \leadsto \dim(X_{\leq 0}) \geq (r/3)^3$.
- $\lim_{t\to 0} \lambda(t) f$ exists $\rightsquigarrow f \in X_{\geq 0} \rightsquigarrow f$ depends on at most $n^3 (r/3)^3 + r(3r-2) + 6r(n-r)$ parameters.
- So density of $\{Q(f) \ge r\}$ implies $r \le C\sqrt{n}$.

- $\lim_{t\to 0} \lambda(t)\widetilde{q}$ exists $\leadsto \widetilde{q} \in X_{\leq 0} \cap \operatorname{GL}_n^3 \cdot I_r \leadsto \dim(X_{\leq 0}) \geq (r/3)^3$.
- $\lim_{t\to 0} \lambda(t) f$ exists $\leadsto f \in X_{\geq 0} \leadsto f$ depends on at most $n^3 (r/3)^3 + r(3r-2) + 6r(n-r)$ parameters.
- So density of $\{Q(f) \ge r\}$ implies $r \le C\sqrt{n}$.
- For \geq , we show $\exists \lambda : \lim_{t \to 0} \lambda(t) f \in GL_n^3 \cdot I_r, r \sim 2\sqrt{n}$.

Definition. $f: U \times V \rightarrow W, g: A \times B \rightarrow C \rightsquigarrow f \oplus g: (U \oplus A) \times (V \oplus B) \rightarrow (W \oplus C)$ is their *direct sum*.

Definition. $f: U \times V \rightarrow W, g: A \times B \rightarrow C \rightsquigarrow f \oplus g: (U \oplus A) \times (V \oplus B) \rightarrow (W \oplus C)$ is their *direct sum*.

 $\rightsquigarrow Q(f \oplus g) \geq Q(f) + Q(g)$ and $\underline{Q}(f \oplus g) \geq \underline{Q}(f) + \underline{Q}(g)$.

Definition. $f: U \times V \rightarrow W, g: A \times B \rightarrow C \rightsquigarrow f \oplus g: (U \oplus A) \times (V \oplus B) \rightarrow (W \oplus C)$ is their *direct sum*.

$$\rightsquigarrow Q(f \oplus g) \geq Q(f) + Q(g) \text{ and } \underline{Q}(f \oplus g) \geq \underline{Q}(f) + \underline{Q}(g).$$

Observation

[Derksen-Makam-Zuiddam]

This can be (very) strict! Take $f: K^n \times K^n \to K^n$ general, so that $g:=I_n-f$ is also general. Then $2n \geq Q(f \oplus g) \geq Q(f+g) = n$ but $Q(f) + Q(g) \approx 2\sqrt{3n}$.

Definition. $f: U \times V \rightarrow W, g: A \times B \rightarrow C \rightsquigarrow f \oplus g: (U \oplus A) \times (V \oplus B) \rightarrow (W \oplus C)$ is their *direct sum*.

$$\rightsquigarrow Q(f \oplus g) \geq Q(f) + Q(g)$$
 and $\underline{Q}(f \oplus g) \geq \underline{Q}(f) + \underline{Q}(g)$.

Observation

[Derksen-Makam-Zuiddam]

This can be (very) strict! Take $f: K^n \times K^n \to K^n$ general, so that $g:=I_n-f$ is also general. Then $2n \geq Q(f \oplus g) \geq Q(f+g) = n$ but $Q(f) + Q(g) \approx 2\sqrt{3n}$.

Same applies to \underline{Q} , just with $2C\sqrt{n}$ from B-C-D-R.

Definition. r is a *typical subrank* for real bilinear maps f: $U \times V \rightarrow W$ if $\{f \mid Q(f) = r\} \supseteq$ a Euclidean-open set.

Definition. r is a *typical subrank* for real bilinear maps f: $U \times V \rightarrow W$ if $\{f \mid Q(f) = r\} \supseteq$ a Euclidean-open set.

Example. For $U = V = W = \mathbb{R}^2$ the typical Q are 1, 2.

$$\Delta > 0, Q = R = 2$$

$$\Delta = 0$$

$$\Delta < 0, Q = 1, R = 3$$

Definition. r is a *typical subrank* for real bilinear maps f: $U \times V \rightarrow W$ if $\{f \mid Q(f) = r\} \supseteq$ a Euclidean-open set.

Example. For $U = V = W = \mathbb{R}^2$ the typical Q are 1, 2.

Theorem [Biaggi-D-Eggleston] For $U = V = W = \mathbb{R}^4$ the typical ranks are 2, 3.

$$\Delta > 0, Q = R = 2$$

$$\Delta = 0$$

$$\Delta < 0, Q = 1, R = 3$$

Definition. r is a *typical subrank* for real bilinear maps f: $U \times V \rightarrow W$ if $\{f \mid Q(f) = r\} \supseteq$ a Euclidean-open set.

Example. For $U = V = W = \mathbb{R}^2$ the typical Q are 1, 2.

Theorem [Biaggi-D-Eggleston] For $U = V = W = \mathbb{R}^4$ the typical ranks are 2, 3.

$$\Delta > 0, Q = R = 2$$

$$\Delta = 0$$

$$\Delta < 0, Q = 1, R = 3$$

Proof. • $3 = \sqrt{3 \cdot 4 - 2}$, use Derksen-Makam-Zuiddam.

Definition. r is a *typical subrank* for real bilinear maps f: $U \times V \rightarrow W$ if $\{f \mid Q(f) = r\} \supseteq$ a Euclidean-open set.

Example. For $U = V = W = \mathbb{R}^2$ the typical Q are 1, 2.

Theorem [Biaggi-D-Eggleston] For $U = V = W = \mathbb{R}^4$ the typical ranks are 2, 3.

$$\Delta > 0, Q = R = 2$$

$$\Delta = 0$$

$$\Delta < 0, Q = 1, R = 3$$

Proof. • $3 = \sqrt{3 \cdot 4 - 2}$, use Derksen-Makam-Zuiddam.

• Any sufficiently general $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^3$ has Q(f) = 2.

Definition. r is a *typical subrank* for real bilinear maps f: $U \times V \rightarrow W$ if $\{f \mid Q(f) = r\} \supseteq$ a Euclidean-open set.

Example. For $U = V = W = \mathbb{R}^2$ the typical Q are 1, 2.

Theorem [Biaggi-D-Eggleston] For $U = V = W = \mathbb{R}^4$ the typical ranks are 2, 3.

Proof. • $3 = \sqrt{3 \cdot 4 - 2}$, use Derksen-Makam-Zuiddam.

- Any sufficiently general $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^3$ has Q(f) = 2.
- Any f near the multiplication \cdot of \mathbb{H} has Q(f) = 2 < 3: if = 3, then $\dim(\gamma(\alpha(e_1) \cdot \operatorname{im}(\beta))) \geq 2$, contradiction.

Definition. r is a *typical subrank* for real bilinear maps f: $U \times V \rightarrow W$ if $\{f \mid Q(f) = r\} \supseteq$ a Euclidean-open set.

Example. For $U = V = W = \mathbb{R}^2$ the typical Q are 1, 2.

Theorem [Biaggi-D-Eggleston] For $U = V = W = \mathbb{R}^4$ the typical ranks are 2, 3.

$$\Delta > 0, Q = R = 2$$

$$\Delta = 0$$

$$\Delta < 0, Q = 1, R = 3$$

Proof. • $3 = \sqrt{3 \cdot 4 - 2}$, use Derksen-Makam-Zuiddam.

- Any sufficiently general $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^3$ has Q(f) = 2.
- Any f near the multiplication \cdot of \mathbb{H} has Q(f) = 2 < 3: if = 3, then $\dim(\gamma(\alpha(e_1) \cdot \operatorname{im}(\beta))) \geq 2$, contradiction.

Theorem. {typical subranks} form an interval (uses Bernardi-Blekherman-Ottaviani).

Real versus complex subrank

Have seen an example with $Q_{\mathbb{R}}(f) = 1$, $Q_{\mathbb{C}}(f_{\mathbb{C}}) = 2$, namely, scalar multiplication $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$ as real bilinear map.

Real versus complex subrank

Have seen an example with $Q_{\mathbb{R}}(f)=1$, $Q_{\mathbb{C}}(f_{\mathbb{C}})=2$, namely, scalar multiplication $\mathbb{C}\times\mathbb{C}\to\mathbb{C}$ as real bilinear map.

Additivity *does* hold for copies of this tensor:

Have seen an example with $Q_{\mathbb{R}}(f) = 1$, $Q_{\mathbb{C}}(f_{\mathbb{C}}) = 2$, namely, scalar multiplication $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$ as real bilinear map.

Additivity does hold for copies of this tensor:

Theorem [B-D-E]

Real rank of $\mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}^n$, $(a, b) \mapsto a * b = (a_i b_i)_i$ is n.

(But \exists nontrivial α , β , γ , e.g. for n = 3 can take $\alpha = \beta : \mathbb{R}^3 \to \mathbb{C}^3$ general, and suitable γ .)

Have seen an example with $Q_{\mathbb{R}}(f) = 1$, $Q_{\mathbb{C}}(f_{\mathbb{C}}) = 2$, namely, scalar multiplication $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$ as real bilinear map.

Additivity does hold for copies of this tensor:

Theorem [B-D-E]

Real rank of $\mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}^n$, $(a, b) \mapsto a * b = (a_i b_i)_i$ is n.

(But \exists nontrivial α , β , γ , e.g. for n = 3 can take $\alpha = \beta : \mathbb{R}^3 \to \mathbb{C}^3$ general, and suitable γ .)

Note. $Q_{\mathbb{C}}(f_{\mathbb{C}}) = 2n$ here.

Real versus complex subrank

Have seen an example with $Q_{\mathbb{R}}(f) = 1$, $Q_{\mathbb{C}}(f_{\mathbb{C}}) = 2$, namely, scalar multiplication $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$ as real bilinear map.

Additivity does hold for copies of this tensor:

Theorem [B-D-E]

Real rank of $\mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}^n$, $(a, b) \mapsto a * b = (a_i b_i)_i$ is n.

(But \exists nontrivial α , β , γ , e.g. for n = 3 can take $\alpha = \beta : \mathbb{R}^3 \to \mathbb{C}^3$ general, and suitable γ .)

Note. $Q_{\mathbb{C}}(f_{\mathbb{C}}) = 2n$ here.

Proof is a nontrivial induction on n; for an arbitrary division algebra A over K we get $Q(\mu_{A^n}) \leq \frac{\dim_K(A)}{2} \cdot n$.

Some open questions

Theorem

[B-D-E]

For any real bilinear map f, we have $Q(f) \geq \sqrt{Q_{\mathbb{C}}(f_{\mathbb{C}})}$.

Can someone please do better?

(\mathbb{C}^n shows that $Q_{\mathbb{R}}(f)$ can be $\frac{1}{2}Q_{\mathbb{C}}(f_{\mathbb{C}})$.)

Some open questions

Theorem

[B-D-E]

For any real bilinear map f, we have $Q(f) \geq \sqrt{Q_{\mathbb{C}}(f_{\mathbb{C}})}$.

Can someone please do better?

(\mathbb{C}^n shows that $Q_{\mathbb{R}}(f)$ can be $\frac{1}{2}Q_{\mathbb{C}}(f_{\mathbb{C}})$.)

When $r = \sqrt{3n-2}$ is an integer, for sufficiently general f there are finitely many α , β , γ with $\gamma \circ f \circ (\alpha \times \beta) = I_r$ by Pielasa-Šafránek-Shatsila.

How many?

Theorem

[B-D-E]

For any real bilinear map f, we have $Q(f) \geq \sqrt{Q_{\mathbb{C}}(f_{\mathbb{C}})}$.

Can someone please do better?

(\mathbb{C}^n shows that $Q_{\mathbb{R}}(f)$ can be $\frac{1}{2}Q_{\mathbb{C}}(f_{\mathbb{C}})$.)

When $r = \sqrt{3n-2}$ is an integer, for sufficiently general f there are finitely many α , β , γ with $\gamma \circ f \circ (\alpha \times \beta) = I_r$ by Pielasa-Šafránek-Shatsila.

- How many?
- How many components does $\{f \mid \underline{Q}(f) \geq r\}$ have?

Theorem

[B-D-E]

For any real bilinear map f, we have $Q(f) \geq \sqrt{Q_{\mathbb{C}}(f_{\mathbb{C}})}$.

• Can someone please do better?

(\mathbb{C}^n shows that $Q_{\mathbb{R}}(f)$ can be $\frac{1}{2}Q_{\mathbb{C}}(f_{\mathbb{C}})$.)

When $r = \sqrt{3n-2}$ is an integer, for sufficiently general f there are finitely many α , β , γ with $\gamma \circ f \circ (\alpha \times \beta) = I_r$ by Pielasa-Šafránek-Shatsila.

How many?

- $(or \leq)$
- How many components does $\overline{\{f \mid \underline{Q}(f) \geq r\}}$ have?

Theorem

[B-D-E]

For any real bilinear map f, we have $Q(f) \geq \sqrt{Q_{\mathbb{C}}(f_{\mathbb{C}})}$.

• Can someone please do better?

(\mathbb{C}^n shows that $Q_{\mathbb{R}}(f)$ can be $\frac{1}{2}Q_{\mathbb{C}}(f_{\mathbb{C}})$.)

When $r = \sqrt{3n-2}$ is an integer, for sufficiently general f there are finitely many α , β , γ with $\gamma \circ f \circ (\alpha \times \beta) = I_r$ by Pielasa-Šafránek-Shatsila.

How many?

 $(or \leq)$

• How many components does $\overline{\{f \mid \underline{Q}(f) \geq r\}}$ have?

Thank you!

References

 Alessandra Bernardi, Grigoriy Blekherman, and Georgio Ottaviani: On real typical ranks. Boll. Unione Mat. Ital. 11, No. 3, 293-307 (2018).

- Benjamin Biaggi, Chia-Yu Chain, Jan Draisma, and Filip Rupniewski: *Border subrank via a generalised Hilbert-Mumford criterion*, Adv. Math. 461, Article ID 110077, 16 p. (2025).
- Benjamin Biaggi, Jan Draisma, and Sarah Eggleston: Real subrank of order-three tensors, arXiv:2503.17273
- Harm Derksen, Visu Makam, and Jeroen Zuiddam. *Subrank and optimal reduction of scalar multiplications to generic tensors.* J. Lond. Math. Soc., II. Ser., 110(2):26, 2024.
- Volker Strassen: Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math., 375/376:406–443, 1987.