
1Subranks of bilinear maps

Jan Draisma
University of Bern

(Joint with Biaggi-Chang-Rupniewski
and with Biaggi-Eggleston)



2 - 1Subrank

U × V Wf
f :



2 - 2Subrank

U × V Wf

K r × K r K r

α × β γ
f :



2 - 3Subrank

U × V Wf

K r × K r K r

α × β γ

Ir : (a, b) 7→ a ∗ b := (aibi )i

f :

1 1Ir :



2 - 4Subrank

U × V Wf

K r × K r K r

α × β γ

Ir : (a, b) 7→ a ∗ b := (aibi )i

Definition. [Strassen]
The subrank of f is Q(f ) := max{r | ∃α, β, γ : γ ◦ f ◦ (α × β)
is the Hadamard product Ir : K r × K r → K r}.

f :

1 1Ir :



2 - 5Subrank

U × V Wf

K r × K r K r

α × β γ

Ir : (a, b) 7→ a ∗ b := (aibi )i

Definition. [Strassen]
The subrank of f is Q(f ) := max{r | ∃α, β, γ : γ ◦ f ◦ (α × β)
is the Hadamard product Ir : K r × K r → K r}.

Remark. α and β are injective, γ is surjective, so
Q(f ) ≤ min{dim(U), dim(V ), dim(W )}.

f :

1 1Ir :



2 - 6Subrank

U × V Wf

K r × K r K r

α × β γ

Ir : (a, b) 7→ a ∗ b := (aibi )i

Definition. [Strassen]
The subrank of f is Q(f ) := max{r | ∃α, β, γ : γ ◦ f ◦ (α × β)
is the Hadamard product Ir : K r × K r → K r}.

Remark. α and β are injective, γ is surjective, so
Q(f ) ≤ min{dim(U), dim(V ), dim(W )}.

Example. Q(f ) = 0 ⇔ f = 0, and Q(Ir ) = r .
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α × β γ

(a, b) 7→ a ∗ b

Q(f ) = max{r | ...}

R(f ) = min{r | ...}

Remark. If f concise (surjective, zero radical), then
Q(f ) ≤ min{dim(U), dim(V ), dim(W )}

≤ max{dim(U), dim(V ), dim(W )} ≤ R(f ).
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• How does one compute Q(f )?

(No idea. Finite task when |K | < ∞, Buchberger algorithm
when K = K , quantifier elimination for K = R. Computable
when K = Q?)

• Behaviour under field extensions?

f : U × V → W ⇝ fL : UL × VL → WL
Q(f ) =: QK (f ) ≤ QL(fL); how about QK (f ) ≥ F (QL(fL))?

Example. K = R, U = V = W = C as R-space,
f : C × C → C scalar multiplication as R-bilinear map.

Then 1 ≤ QR(f ) ≤ 2 and in fact Q(f ) = 1 since f (u, v) ̸= 0
when u, v ̸= 0. But QC(fC) = 2 due to C ⊗R C ∼= C2.
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5 - 4Questions, continued

• Subrank of a sufficiently general f : U × V → W?

• Variant of the last question for border subrank (K = K ):

U × V Wf

K n × K n K n

αt × βt γt

(a, b) → a ∗ b for t → 0

Definition. The border subrank of f is
Q(f ) := max{r | ∃αt , βt , γt : limt→0 γt ◦ f ◦ (αt × βt ) = Ir}.

Remark • Q(f ) ≤ Q(f ) ≤ min{dim(U), dim(V ), dim(W )}
• {f | Q(f ) ≤ r} is typically not closed!
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Theorem [Derksen-Makam-Zuiddam]
For K = K and U = V = W = K n and f sufficiently
general, Q(f ) ≈

√
3n.

Remark. For order-d tensors, the answer is ≈ Cn1/(d−1).
Exact values were found by Pielasa-Šafránek-Shatsila!

Proof sketch of ≤ • After acting with GLn × GLn × GLn, f
with Q(f ) ≥ r looks like f̃ ((a1, a2), (b1, b2)) = (a1 ∗ b1, ...).

r n − r• The space of such f̃ has dim n3 − r3

and is stabilised by a group of dim 2r + 3(n − r )n.
r

n − r
• So {f | Q(f ) ≥ r} has dim
≤ n3 − r3 + 3n2 − 2r − 3(n − r )n
= n3 − r (r2 − 3n + 2)⇝ density requires r ≤

√
3n − 2. □
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Theorem [Biaggi-Chang-D-Rupniewski]
For K = K and U = V = W = K n and f sufficiently
general, Q(f ) ≈ C

√
n, and C ≥ 2(>

√
3)

Remarks
• Before, only ≤ n − 1 was known (Gesmundo).

• For ≤, need necessary conditions on f s.t. Ir ∈ (GL3
n)f :

Generalised Hilbert-Mumford Criterion [B-C-D-R]
Let a reductive group G acts on an affine variety X and let
p, q ∈ X with q ∈ Gp. Then ∃q̃ ∈ Gq and λ : K ∗ → G :

limt→0 λ(t)p = limt→∞ λ(t)q̃.

• Take X := U ⊗ V ⊗ W and p := f (general) and q := Ir ⇝
decompose X = X<0 ⊕ X0 ⊕ X>0 using λ.
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• For ≥, we show ∃λ : limt→0 λ(t)f ∈ GL3
n · Ir , r ∼ 2

√
n. □

• limt→0 λ(t)q̃ exists⇝ q̃ ∈ X≤0 ∩ GL3
n · Ir ⇝

dim(X≤0) ≥ (r/3)3.

• limt→0 λ(t)f exists⇝ f ∈ X≥0 ⇝ f depends on at most
n3 − (r/3)3 + r (3r − 2) + 6r (n − r ) parameters.

• So density of {Q(f ) ≥ r} implies r ≤ C
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⇝ Q(f ⊕ g) ≥ Q(f ) + Q(g) and Q(f ⊕ g) ≥ Q(f ) + Q(g).

Observation [Derksen-Makam-Zuiddam]
This can be (very) strict! Take f : K n × K n → K n general,
so that g := In − f is also general. Then
2n ≥ Q(f ⊕ g) ≥ Q(f + g) = n but Q(f ) + Q(g) ≈ 2

√
3n.

Definition. f : U × V → W , g : A × B → C ⇝ f ⊕ g :
(U ⊕ A)× (V ⊕ B) → (W ⊕ C) is their direct sum.

Same applies to Q, just with 2C
√

n from B-C-D-R.

f
g



10 - 1Typical subranks

Definition. r is a typical subrank for real bilinear maps f :
U × V → W if {f | Q(f ) = r} ⊇ a Euclidean-open set.



10 - 2Typical subranks

Definition. r is a typical subrank for real bilinear maps f :
U × V → W if {f | Q(f ) = r} ⊇ a Euclidean-open set.

Example. For U = V = W = R2 the typical Q are 1, 2.

∆ = 0

∆ > 0, Q = R = 2

∆ < 0, Q = 1, R = 3



10 - 3Typical subranks

Definition. r is a typical subrank for real bilinear maps f :
U × V → W if {f | Q(f ) = r} ⊇ a Euclidean-open set.

Example. For U = V = W = R2 the typical Q are 1, 2.

∆ = 0

∆ > 0, Q = R = 2

∆ < 0, Q = 1, R = 3

Theorem [Biaggi-D-Eggleston]
For U = V = W = R4 the
typical ranks are 2, 3.



10 - 4Typical subranks

Definition. r is a typical subrank for real bilinear maps f :
U × V → W if {f | Q(f ) = r} ⊇ a Euclidean-open set.

Example. For U = V = W = R2 the typical Q are 1, 2.

∆ = 0

∆ > 0, Q = R = 2

∆ < 0, Q = 1, R = 3

Theorem [Biaggi-D-Eggleston]
For U = V = W = R4 the
typical ranks are 2, 3.

Proof. • 3 =
√

3 · 4 − 2, use Derksen-Makam-Zuiddam.



10 - 5Typical subranks

Definition. r is a typical subrank for real bilinear maps f :
U × V → W if {f | Q(f ) = r} ⊇ a Euclidean-open set.

Example. For U = V = W = R2 the typical Q are 1, 2.

∆ = 0

∆ > 0, Q = R = 2

∆ < 0, Q = 1, R = 3

Theorem [Biaggi-D-Eggleston]
For U = V = W = R4 the
typical ranks are 2, 3.

Proof. • 3 =
√

3 · 4 − 2, use Derksen-Makam-Zuiddam.

• Any sufficiently general f : R2 × R2 → R3 has Q(f ) = 2.



10 - 6Typical subranks

Definition. r is a typical subrank for real bilinear maps f :
U × V → W if {f | Q(f ) = r} ⊇ a Euclidean-open set.

Example. For U = V = W = R2 the typical Q are 1, 2.

∆ = 0

∆ > 0, Q = R = 2

∆ < 0, Q = 1, R = 3

Theorem [Biaggi-D-Eggleston]
For U = V = W = R4 the
typical ranks are 2, 3.

Proof. • 3 =
√

3 · 4 − 2, use Derksen-Makam-Zuiddam.

• Any sufficiently general f : R2 × R2 → R3 has Q(f ) = 2.

• Any f near the multiplication · of H has Q(f ) = 2 < 3: if
= 3, then dim(γ(α(e1) · im(β))) ≥ 2, contradiction. □



10 - 7Typical subranks

Definition. r is a typical subrank for real bilinear maps f :
U × V → W if {f | Q(f ) = r} ⊇ a Euclidean-open set.

Example. For U = V = W = R2 the typical Q are 1, 2.

∆ = 0

∆ > 0, Q = R = 2

∆ < 0, Q = 1, R = 3

Theorem [Biaggi-D-Eggleston]
For U = V = W = R4 the
typical ranks are 2, 3.

Proof. • 3 =
√

3 · 4 − 2, use Derksen-Makam-Zuiddam.

• Any sufficiently general f : R2 × R2 → R3 has Q(f ) = 2.

• Any f near the multiplication · of H has Q(f ) = 2 < 3: if
= 3, then dim(γ(α(e1) · im(β))) ≥ 2, contradiction. □

Theorem. {typical subranks} form an interval (uses
Bernardi-Blekherman-Ottaviani).
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Have seen an example with QR(f ) = 1, QC(fC) = 2, namely,
scalar multiplication C × C → C as real bilinear map.

Additivity does hold for copies of this tensor:

Theorem [B-D-E]
Real rank of Cn × Cn → Cn, (a, b) 7→ a ∗ b = (aibi )i is n.

(But ∃ nontrivial α, β, γ, e.g. for n = 3 can take
α = β : R3 → C3 general, and suitable γ.)

Proof is a nontrivial induction on n; for an arbitrary division
algebra A over K we get Q(µAn ) ≤ dimK (A)

2 · n.

Note. QC(fC) = 2n here.
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12 - 5Some open questions

Theorem [B-D-E]
For any real bilinear map f , we have Q(f ) ≥

√
QC(fC).

• Can someone please do better?

(Cn shows that QR(f ) can be 1
2QC(fC).)

When r =
√

3n − 2 is an integer, for sufficiently general f
there are finitely many α, β, γ with γ ◦ f ◦ (α × β) = Ir by
Pielasa-Šafránek-Shatsila.

• How many?

Thank you!
• How many components does {f | Q(f ) ≥ r} have?

(or ≤)
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