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Given an infinite collection (X,,), of algebro-geometric structures,
are they characterised by finitely many among them?

n runs through N, or through all finite sets or trees, or ...

have maps X,, — X,, that propagate structure

Topic 1 (Gaussian two-factor model)
X, ={SST +D|S € R, D diag > 0}
any {i} <...<1i,}C{l,...,n} gives amap X, — X,,

Theorem [Drton-Xiao, Ann. Inst. Stat. Math. 2010]
Y € R™ PD, is in X, iff all 6 X 6 principal submatrices are in Xg.

X, 1s given by polynomial eqgs and ineqs; we will focus on the egs.
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Theorem [Hilbert, Math. Ann. 1890]
For a field K, any 1deal in K[x1, ..., x,] 1s finitely generated.

. ’ . n ; ;. . — . n
uses Dickson’s Lemma: a1, @3, ... € L, = i< j:a;—a; € L,

Theorem [Cohen, J. Alg 1967; Aschenbrenner-Hillar, TAMS 2007]
For every finite set S, let Iy be anideal in Ry := K[x; | i € § ], such
that any 1njection o : § — T maps Is into It via x; = Xxs;). Then
1. 1s generated by Iy, . . ., I}, for some ny.

Sym(S) acts on I, and S — Rg is an Fl-algebra.
uses Higman’s Lemma: ay,,... € L3, = i < j: a; < ;

same thm for K[x;;|i € §, j € [k]] but not for K[x;; | i, j € §]
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Topic 1, continued [Drton-Sturmfels-Sullivant, PTRF 2007]
X, € R™" 2-factor model, vanishing ideal I,, C R[x;; | 7, j € [n]]

Xij — Xji € [, forn > 2
off-diagonal 3 X 3-subdeterminants € [,, forn > 6
2neSym(n)SENUDT - X12X23X34X45X51 € I, torn =5

Theorem [Brouwer-D, Math. Comp. 2011]
These generate [, for all n > 6 via injections [6] — [n].

Replacing 2 by k we know only weaker stabilisation.:

Theorem [D, Adv. Math. 2010]
Yk dng such that via injections [ng] — [n] the 1deal [, generates
I, up to radicall.



Instances of stabilisation

(using Noetherianity up to symmetry)
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Definition
The rank of atensor 7 € V; ® --- ® V,, 1s the minimal number of
terms 1n any expression of 7" as a sum of product states vi®- - -Qvy,.

Theorem [D-Kuttler, Duke 2014]
For any fixed k there 1s a d, independent of n and the V;, such that
{T of rank < k} 1s defined by polynomials of degree < d.

Table T [Landsberg-Manivel, 2004]
k 1011234 e [Qi, 2014]
d 112137 4° >0 + [Strassen,1983]

relevant maps from X(Vi,...,V,) = {rank <k} C V| ®:--® V} into
XWi,....WporX(Vy,...,V,-1®YV,) or X(Vﬂ(l), ey Vﬂ(n))

Snowden has a stabilisation result for higher syzygies for k = 1.
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Second hypersimplex i
P,:={vij=e+e;j| 1 <i# j<nj

Theorem [De Loera-Sturmfels-Thomas, Combinatorica 1995]
P, has a Markov basis consisting of moves v;; + vi; — vi + Vg
and v;; — vj; for i, j, k, [ distinct; 1.e., if Zij CijVij = Zl—j d;;ivi; with
cij,dij € Zso, then the expressions are connected by such moves.

Theorem [D-Eggermont-Krone-Leykin Algebra & Number Th 2016]
Any sequence (P, C Z"), of lattice point configurations such that
P, = Sym(n)P,_; for n > 0 admits a sequence (M,), of Markov
bases such that M,, = Sym(n)M,,_ for n > 0.

(Also true for P, C Z", considered a subset of Z*"*V by adding
a zero column. We also have an algorithm for computing (M,,),,.)
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M a compact manifold

for a finite set S define Cs (M) := {(p;)ics | pi # pjifi # j} € M°
for any injection § C T have map Cy(M) — Cs(M)

dually: HY(Cs(M), Q) — H*(Cr(M), Q).

Theorem [Church, Invent. Math. 2012]
Finitely many of these cohomology groups generate the other ones
via these maps.

Among other things, this implies that the Sym(S )-character of
HY(Cg(M),Q) is constant for |S| > O.
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Fix field K. For a finite set § and a natural number d let X; g C
Gr(d, K%) be a Zariski-closed subset, such that:

1. deletion Gr(d, K*) — Gr(d, K*") maps X, g into X, g_;;

2. contraction Gr(d, K¥) — Gr(d — 1, K¥™") maps X, ¢ to X4_1 g_i;
3. X4 g 1s invariant under Sym(E).

Question Is X, , determined by finitely many X, g?

Remark

For finite K this 1s the matroid minor theorem (Geelen-Gerards-
Whittle).

For infinite K, the MMT does not hold, but the above might.
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Grassmannians

Gry(V) 1s a variety parameterising k-dimensional subspaces of V.
It is functorial in V, and the “Hodge dual” A"V — A" V* with
dim V = n maps Gri (V) — Gr,_(V").

A sequence Xy, Xi,Xp,...of rules V — X (V) C /\k(V) satisfying
these two properties 1s called a Pliicker variety.

Construction of new Pliicker varieties
tangential variety, secant variety, etc.

Theorem [D-Eggermont Crelle 2017]
For bounded Pliicker varieties, (X (K")) -« stabilises.

(For X = Gr, X = Sato’s Grassmannian C dual infinite wedge.)
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Algebraic statistics
families of graphical models where the graph grows
[Hillar-Sullivant, Takemura, Yoshida, D-Eggermont,. . . ]

Commutative algebra and representation theory

higher syzygies, sequences of modules
[Sam-Snowden, Church-Ellenberg-Farb, D-Krone-Leykin]

Thank you.
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