Stabilisation in algebra, geometry, and combinatorics

Jan Draisma
TU Eindhoven and VU Amsterdam (→ Bern)

SIAM DM 16, Atlanta

Central question

Given an infinite collection $(X_n)_n$ of algebro-geometric structures, are they characterised by finitely many among them?

Given an infinite collection $(X_n)_n$ of algebro-geometric structures, are they characterised by finitely many among them?

n runs through \mathbb{N} , or through all finite sets or trees, or ...

have maps $X_n \to X_m$ that propagate structure

Given an infinite collection $(X_n)_n$ of algebro-geometric structures, are they characterised by finitely many among them?

n runs through \mathbb{N} , or through all finite sets or trees, or ...

have maps $X_n \to X_m$ that propagate structure

Topic 1 (Gaussian two-factor model)

$$X_n := \{SS^T + D \mid S \in \mathbb{R}^{n \times 2}, D \text{ diag } > 0\}$$

any $\{i_1 < \ldots < i_m\} \subseteq \{1, \ldots, n\}$ gives a map $X_n \to X_m$

Given an infinite collection $(X_n)_n$ of algebro-geometric structures, are they characterised by finitely many among them?

n runs through \mathbb{N} , or through all finite sets or trees, or ...

have maps $X_n \to X_m$ that propagate structure

Topic 1 (Gaussian two-factor model)

$$X_n := \{SS^T + D \mid S \in \mathbb{R}^{n \times 2}, D \text{ diag } > 0\}$$

any $\{i_1 < \ldots < i_m\} \subseteq \{1, \ldots, n\}$ gives a map $X_n \to X_m$

Theorem

[Drton-Xiao, Ann. Inst. Stat. Math. 2010]

 $\Sigma \in \mathbb{R}^{n \times n}$, PD, is in X_n iff all 6×6 principal submatrices are in X_6 .

 X_n is given by polynomial eqs and ineqs; we will focus on the eqs.

Theorem

[Hilbert, Math. Ann. 1890]

For a field K, any ideal in $K[x_1, \ldots, x_n]$ is finitely generated.

uses Dickson's Lemma:
$$\alpha_1, \alpha_2, \ldots \in \mathbb{Z}_{\geq 0}^n \Rightarrow \exists i < j : \alpha_j - \alpha_i \in \mathbb{Z}_{\geq 0}^n$$

Theorem

[Hilbert, Math. Ann. 1890]

For a field K, any ideal in $K[x_1, \ldots, x_n]$ is finitely generated.

uses *Dickson's Lemma*: $\alpha_1, \alpha_2, \ldots \in \mathbb{Z}_{\geq 0}^n \Rightarrow \exists i < j : \alpha_j - \alpha_i \in \mathbb{Z}_{\geq 0}^n$

Theorem [Cohen, *J. Alg* 1967; Aschenbrenner-Hillar, *TAMS* 2007]

For every finite set S, let I_S be an ideal in $R_S := K[x_i \mid i \in S]$, such that any injection $\sigma: S \to T$ maps I_S into I_T via $x_i \mapsto x_{\sigma(i)}$. Then I_{\bullet} is generated by $I_{\emptyset}, \ldots, I_{[n_0]}$ for some n_0 .

Sym(S) acts on I_S , and $S \mapsto R_S$ is an FI-algebra.

uses Higman's Lemma: $\alpha_1, \alpha_2, \ldots \in \mathbb{Z}_{\geq 0}^* \Rightarrow \exists i < j : \alpha_i \leq \alpha_j$

Theorem

[Hilbert, Math. Ann. 1890]

For a field K, any ideal in $K[x_1, \ldots, x_n]$ is finitely generated.

uses Dickson's Lemma: $\alpha_1, \alpha_2, \ldots \in \mathbb{Z}_{\geq 0}^n \Rightarrow \exists i < j : \alpha_j - \alpha_i \in \mathbb{Z}_{\geq 0}^n$

Theorem [Cohen, *J. Alg* 1967; Aschenbrenner-Hillar, *TAMS* 2007]

For every finite set S, let I_S be an ideal in $R_S := K[x_i \mid i \in S]$, such that any injection $\sigma: S \to T$ maps I_S into I_T via $x_i \mapsto x_{\sigma(i)}$. Then I_{\bullet} is generated by $I_{\emptyset}, \ldots, I_{[n_0]}$ for some n_0 .

Sym(S) acts on I_S , and $S \mapsto R_S$ is an FI-algebra.

uses Higman's Lemma: $\alpha_1, \alpha_2, \ldots \in \mathbb{Z}_{\geq 0}^* \Rightarrow \exists i < j : \alpha_i \leq \alpha_j$

same thm for $K[x_{ij}|i \in S, j \in [k]]$ but not for $K[x_{ij}|i, j \in S]$

[Drton-Sturmfels-Sullivant, *PTRF* 2007]

 $X_n \subseteq \mathbb{R}^{n \times n}$ 2-factor model, vanishing ideal $I_n \subseteq \mathbb{R}[x_{ij} \mid i, j \in [n]]$

[Drton-Sturmfels-Sullivant, *PTRF* 2007]

 $X_n \subseteq \mathbb{R}^{n \times n}$ 2-factor model, vanishing ideal $I_n \subseteq \mathbb{R}[x_{ij} \mid i, j \in [n]]$

 $x_{ij} - x_{ji} \in I_n \text{ for } n \ge 2$ off-diagonal 3×3 -subdeterminants $\in I_n \text{ for } n \ge 6$ $\sum_{\pi \in \text{Sym}(n)} \text{sgn}(\pi)\pi \cdot x_{12}x_{23}x_{34}x_{45}x_{51} \in I_n \text{ for } n \ge 5$

[Drton-Sturmfels-Sullivant, PTRF 2007]

 $X_n \subseteq \mathbb{R}^{n \times n}$ 2-factor model, vanishing ideal $I_n \subseteq \mathbb{R}[x_{ij} \mid i, j \in [n]]$

$$x_{ij} - x_{ji} \in I_n \text{ for } n \ge 2$$

off-diagonal 3×3 -subdeterminants $\in I_n \text{ for } n \ge 6$
 $\sum_{\pi \in \text{Sym}(n)} \text{sgn}(\pi)\pi \cdot x_{12}x_{23}x_{34}x_{45}x_{51} \in I_n \text{ for } n \ge 5$

Theorem

[Brouwer-D, Math. Comp. 2011]

These generate I_n for all $n \ge 6$ via injections $[6] \to [n]$.

[Drton-Sturmfels-Sullivant, PTRF 2007]

 $X_n \subseteq \mathbb{R}^{n \times n}$ 2-factor model, vanishing ideal $I_n \subseteq \mathbb{R}[x_{ij} \mid i, j \in [n]]$

 $x_{ij} - x_{ji} \in I_n \text{ for } n \ge 2$ off-diagonal 3×3 -subdeterminants $\in I_n \text{ for } n \ge 6$ $\sum_{\pi \in \text{Sym}(n)} \text{sgn}(\pi)\pi \cdot x_{12}x_{23}x_{34}x_{45}x_{51} \in I_n \text{ for } n \ge 5$

Theorem

[Brouwer-D, Math. Comp. 2011]

These generate I_n for all $n \ge 6$ via injections $[6] \to [n]$.

Replacing 2 by k we know only weaker stabilisation:

Theorem

[D, Adv. Math. 2010]

 $\forall k \; \exists n_0 \; \text{such that via injections} \; [n_0] \to [n] \; \text{the ideal} \; I_{n_0} \; \text{generates} \; I_n \; up \; to \; radical.}$

Instances of stabilisation

(using Noetherianity up to symmetry)

The rank of a tensor $T \in V_1 \otimes \cdots \otimes V_n$ is the minimal number of terms in any expression of T as a sum of product states $v_1 \otimes \cdots \otimes v_n$.

The rank of a tensor $T \in V_1 \otimes \cdots \otimes V_n$ is the minimal number of terms in any expression of T as a sum of product states $v_1 \otimes \cdots \otimes v_n$.

Theorem

[D-Kuttler, Duke 2014]

For any fixed k there is a d, independent of n and the V_i , such that $\{T \text{ of rank } \le k\}$ is defined by polynomials of degree $\le d$.

The *rank* of a tensor $T \in V_1 \otimes \cdots \otimes V_n$ is the minimal number of terms in any expression of T as a sum of *product states* $v_1 \otimes \cdots \otimes v_n$.

Theorem

[D-Kuttler, Duke 2014]

For any fixed k there is a d, independent of n and the V_i , such that $\{T \text{ of rank } \le k\}$ is defined by polynomials of degree $\le d$.

Table

- † [Landsberg-Manivel, 2004]
- [Qi, 2014]
- * [Strassen, 1983]

The *rank* of a tensor $T \in V_1 \otimes \cdots \otimes V_n$ is the minimal number of terms in any expression of T as a sum of *product states* $v_1 \otimes \cdots \otimes v_n$.

Theorem

[D-Kuttler, Duke 2014]

For any fixed k there is a d, independent of n and the V_i , such that $\{T \text{ of rank } \le k\}$ is defined by polynomials of degree $\le d$.

Table

- † [Landsberg-Manivel, 2004]
- [Qi, 2014]
- * [Strassen,1983]

relevant maps from
$$X(V_1, ..., V_n) = \{\overline{\operatorname{rank}} \leq k\} \subseteq V_1 \otimes \cdots \otimes V_k \text{ into } X(W_1, ..., W_n) \text{ or } X(V_1, ..., V_{n-1} \otimes V_n) \text{ or } X(V_{\pi(1)}, ..., V_{\pi(n)})$$

The rank of a tensor $T \in V_1 \otimes \cdots \otimes V_n$ is the minimal number of terms in any expression of T as a sum of product states $v_1 \otimes \cdots \otimes v_n$.

Theorem

[D-Kuttler, Duke 2014]

For any fixed k there is a d, independent of n and the V_i , such that T of rank S is defined by polynomials of degree S d.

Table

- † [Landsberg-Manivel, 2004]
- [Qi, 2014]
- * [Strassen, 1983]

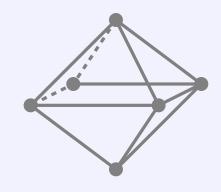
relevant maps from $X(V_1, ..., V_n) = \{ \text{rank} \le k \} \subseteq V_1 \otimes \cdots \otimes V_k \text{ into}$ $X(W_1, ..., W_n) \text{ or } X(V_1, ..., V_{n-1} \otimes V_n) \text{ or } X(V_{\pi(1)}, ..., V_{\pi(n)})$

Snowden has a stabilisation result for higher syzygies for k = 1.

Topic 3: Markov bases

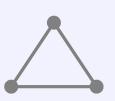
Second hypersimplex

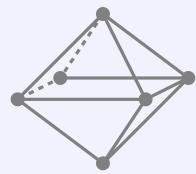
$$P_n := \{v_{ij} = e_i + e_j \mid 1 \le i \ne j \le n\}$$



Second hypersimplex

$$P_n := \{ v_{ij} = e_i + e_j \mid 1 \le i \ne j \le n \}$$





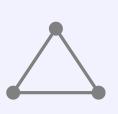
Theorem

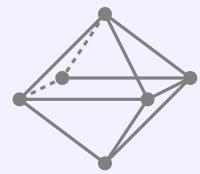
[De Loera-Sturmfels-Thomas, Combinatorica 1995]

 P_n has a Markov basis consisting of moves $v_{ij} + v_{kl} \rightarrow v_{il} + v_{kj}$ and $v_{ij} \rightarrow v_{ji}$ for i, j, k, l distinct; i.e., if $\sum_{ij} c_{ij} v_{ij} = \sum_{ij} d_{ij} v_{ij}$ with $c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0}$, then the expressions are connected by such moves.

Second hypersimplex

$$P_n := \{ v_{ij} = e_i + e_j \mid 1 \le i \ne j \le n \}$$





Theorem

[De Loera-Sturmfels-Thomas, Combinatorica 1995]

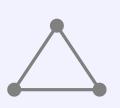
 P_n has a Markov basis consisting of moves $v_{ij} + v_{kl} \rightarrow v_{il} + v_{kj}$ and $v_{ij} \rightarrow v_{ji}$ for i, j, k, l distinct; i.e., if $\sum_{ij} c_{ij} v_{ij} = \sum_{ij} d_{ij} v_{ij}$ with $c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0}$, then the expressions are connected by such moves.

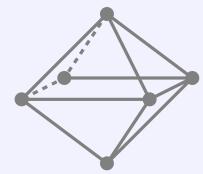
Theorem [D-Eggermont-Krone-Leykin *Algebra & Number Th* 2016]

Any sequence $(P_n \subseteq \mathbb{Z}^n)_n$ of lattice point configurations such that $P_n = \operatorname{Sym}(n)P_{n-1}$ for $n \gg 0$ admits a sequence $(M_n)_n$ of Markov bases such that $M_n = \operatorname{Sym}(n)M_{n-1}$ for $n \gg 0$.

Second hypersimplex

$$P_n := \{ v_{ij} = e_i + e_j \mid 1 \le i \ne j \le n \}$$





Theorem

[De Loera-Sturmfels-Thomas, Combinatorica 1995]

 P_n has a Markov basis consisting of *moves* $v_{ij} + v_{kl} \rightarrow v_{il} + v_{kj}$ and $v_{ij} \rightarrow v_{ji}$ for i, j, k, l distinct; i.e., if $\sum_{ij} c_{ij} v_{ij} = \sum_{ij} d_{ij} v_{ij}$ with $c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0}$, then the expressions are connected by such moves.

Theorem [D-Eggermont-Krone-Leykin *Algebra & Number Th* 2016]

Any sequence $(P_n \subseteq \mathbb{Z}^n)_n$ of lattice point configurations such that $P_n = \operatorname{Sym}(n)P_{n-1}$ for $n \gg 0$ admits a sequence $(M_n)_n$ of Markov bases such that $M_n = \operatorname{Sym}(n)M_{n-1}$ for $n \gg 0$.

(Also true for $P_n \subseteq \mathbb{Z}^{k \times n}$, considered a subset of $\mathbb{Z}^{k \times (n+1)}$ by adding a zero column. We also have an algorithm for computing $(M_n)_n$.)

M a compact manifold for a finite set S define $C_S(M) := \{(p_i)_{i \in S} \mid p_i \neq p_j \text{ if } i \neq j\} \subseteq M^S$ for any injection $S \subseteq T$ have map $C_T(M) \to C_S(M)$ dually: $H^d(C_S(M), \mathbb{Q}) \to H^d(C_T(M), \mathbb{Q})$.

M a compact manifold for a finite set S define $C_S(M) := \{(p_i)_{i \in S} \mid p_i \neq p_j \text{ if } i \neq j\} \subseteq M^S$ for any injection $S \subseteq T$ have map $C_T(M) \to C_S(M)$ dually: $H^d(C_S(M), \mathbb{Q}) \to H^d(C_T(M), \mathbb{Q})$.

Theorem

[Church, Invent. Math. 2012]

Finitely many of these cohomology groups generate the other ones via these maps.

M a compact manifold

for a finite set S define $C_S(M) := \{(p_i)_{i \in S} \mid p_i \neq p_j \text{ if } i \neq j\} \subseteq M^S$ for any injection $S \subseteq T$ have map $C_T(M) \to C_S(M)$ dually: $H^d(C_S(M), \mathbb{Q}) \to H^d(C_T(M), \mathbb{Q})$.

Theorem

[Church, Invent. Math. 2012]

Finitely many of these cohomology groups generate the other ones via these maps.

Among other things, this implies that the Sym(S)-character of $H^d(C_S(M), \mathbb{Q})$ is constant for $|S| \gg 0$.

Fix field K. For a finite set S and a natural number d let $X_{d,E} \subseteq Gr(d, K^E)$ be a Zariski-closed subset, such that:

- 1. deletion $Gr(d, K^E) \to Gr(d, K^{E-i})$ maps $X_{d,E}$ into $X_{d,E-i}$;
- 2. contraction $Gr(d, K^E) \to Gr(d-1, K^{E-i})$ maps $X_{d,E}$ to $X_{d-1,E-i}$;
- 3. $X_{d,E}$ is invariant under Sym(E).

Fix field K. For a finite set S and a natural number d let $X_{d,E} \subseteq Gr(d, K^E)$ be a Zariski-closed subset, such that:

- 1. deletion $Gr(d, K^E) \to Gr(d, K^{E-i})$ maps $X_{d,E}$ into $X_{d,E-i}$;
- 2. contraction $Gr(d, K^E) \to Gr(d-1, K^{E-i})$ maps $X_{d,E}$ to $X_{d-1,E-i}$;
- 3. $X_{d,E}$ is invariant under Sym(E).

Question Is $X_{\bullet,\bullet}$ determined by finitely many $X_{d,E}$?

Fix field K. For a finite set S and a natural number d let $X_{d,E} \subseteq Gr(d, K^E)$ be a Zariski-closed subset, such that:

- 1. deletion $Gr(d, K^E) \to Gr(d, K^{E-i})$ maps $X_{d,E}$ into $X_{d,E-i}$;
- 2. contraction $Gr(d, K^E) \to Gr(d-1, K^{E-i})$ maps $X_{d,E}$ to $X_{d-1,E-i}$;
- 3. $X_{d,E}$ is invariant under Sym(E).

Question Is $X_{\bullet,\bullet}$ determined by finitely many $X_{d,E}$?

Remark

For *finite K* this is the matroid minor theorem (Geelen-Gerards-Whittle).

For *infinite K*, the MMT does not hold, but the above might.

 $Gr_k(V)$ is a variety parameterising k-dimensional subspaces of V. It is functorial in V, and the "Hodge dual" $\bigwedge^k V \to \bigwedge^{n-k} V^*$ with $\dim V = n$ maps $Gr_k(V) \to Gr_{n-k}(V^*)$.

 $Gr_k(V)$ is a variety parameterising k-dimensional subspaces of V. It is functorial in V, and the "Hodge dual" $\bigwedge^k V \to \bigwedge^{n-k} V^*$ with $\dim V = n$ maps $Gr_k(V) \to Gr_{n-k}(V^*)$.

A sequence $X_0, X_1, X_2, ...$ of rules $V \mapsto X_k(V) \subseteq \bigwedge^k(V)$ satisfying these two properties is called a *Plücker variety*.

 $Gr_k(V)$ is a variety parameterising k-dimensional subspaces of V. It is functorial in V, and the "Hodge dual" $\bigwedge^k V \to \bigwedge^{n-k} V^*$ with $\dim V = n$ maps $Gr_k(V) \to Gr_{n-k}(V^*)$.

A sequence $X_0, X_1, X_2, ...$ of rules $V \mapsto X_k(V) \subseteq \bigwedge^k(V)$ satisfying these two properties is called a *Plücker variety*.

Construction of new Plücker varieties tangential variety, secant variety, etc.

 $Gr_k(V)$ is a variety parameterising k-dimensional subspaces of V. It is functorial in V, and the "Hodge dual" $\bigwedge^k V \to \bigwedge^{n-k} V^*$ with $\dim V = n$ maps $Gr_k(V) \to Gr_{n-k}(V^*)$.

A sequence $X_0, X_1, X_2, ...$ of rules $V \mapsto X_k(V) \subseteq \bigwedge^k(V)$ satisfying these two properties is called a *Plücker variety*.

Construction of new Plücker varieties tangential variety, secant variety, etc.

Theorem

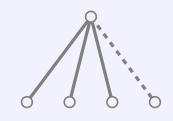
[D-Eggermont Crelle 201?]

For bounded Plücker varieties, $(X_k(K^n))_{k,n-k}$ stabilises.

(For X = Gr, $X_{\infty} = Sato$'s Grassmannian $\subseteq dual$ infinite wedge.)

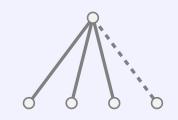
Algebraic statistics

families of graphical models where the graph grows [Hillar-Sullivant, Takemura, Yoshida, D-Eggermont,...]



Algebraic statistics

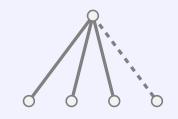
families of graphical models where the graph grows [Hillar-Sullivant, Takemura, Yoshida, D-Eggermont,...]



Commutative algebra and representation theory higher syzygies, sequences of modules [Sam-Snowden, Church-Ellenberg-Farb, D-Krone-Leykin]

Algebraic statistics

families of graphical models where the graph grows [Hillar-Sullivant, Takemura, Yoshida, D-Eggermont,...]



Commutative algebra and representation theory higher syzygies, sequences of modules [Sam-Snowden, Church-Ellenberg-Farb, D-Krone-Leykin]

Thank you.