Algebra and Geometry of Tensors 2: Structured Tensors

Jan Draisma
University of Bern
and TU Eindhoven

Definition. An *order-d* tensor is an $n_1 \times \cdots \times n_d$ block of \mathbb{C} -numbers; or: a $T \in V_1 \otimes \cdots \otimes V_d$, where dim $V_k = n_k$.

a

a ₁	
a_2	

a ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃
<i>a</i> ₂₁	a ₂₂	<i>a</i> ₂₃

On tensors acts $GL(V_1) \times \cdots \times GL(V_d)$.

Definition. An *order-d* tensor is an $n_1 \times \cdots \times n_d$ block of \mathbb{C} -numbers; or: a $T \in V_1 \otimes \cdots \otimes V_d$, where dim $V_k = n_k$.

<i>a</i> ₁	
a_2	

a ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃
a ₂₁	<i>a</i> ₂₂	<i>a</i> ₂₃

On tensors acts $GL(V_1) \times \cdots \times GL(V_d)$.

Structure: usually an interesting subspace of tensors, e.g.:

- symmetric tensors (homogeneous polynomials): $V_i = V$, $S^d(V) = \{T \mid \forall \sigma \in S_d : \sigma(T) = T\}$ (GL(V) acts); • partially symmetric tensors: e.g. $S^2\mathbb{C}^2 \otimes \mathbb{C}^3$ (GL₂ × GL₃);
- a single interesting tensor (symmetry?)

Fact: W an irreducible representation of a connected algebraic group G, then $\mathbb{P}W$ has a unique minimal G-orbit X.

- $G = GL(V_1) \times \cdots \times GL(V_d)$, $W = V_1 \otimes \cdots \otimes V_d \Rightarrow \widehat{X} = \{v_1 \otimes \cdots \otimes v_d \mid v_i \in V_i\}$; X is Segre embedding of $\prod_i \mathbb{P} V_i$
- G = GL(V), $W = S^dV \Rightarrow \widehat{X} = \{v \otimes \cdots \otimes v \mid v \in V\}$; X is *Veronese embedding* of $\mathbb{P}(V)$
- $G = GL(V_1) \times GL(V_2)$, $W = S^{d_1}V_1 \otimes S^{d_2}V_2 \Rightarrow \widehat{X} = \{v_1^{\otimes d_1} \otimes v_2^{\otimes d_2}\}$; X is $Segre-Veronese\ embedding$, etc.

Fact: W an irreducible representation of a connected algebraic group G, then $\mathbb{P}W$ has a unique minimal G-orbit X.

- $G = GL(V_1) \times \cdots \times GL(V_d)$, $W = V_1 \otimes \cdots \otimes V_d \Rightarrow \widehat{X} = \{v_1 \otimes \cdots \otimes v_d \mid v_i \in V_i\}$; X is Segre embedding of $\prod_i \mathbb{P} V_i$
- G = GL(V), $W = S^dV \Rightarrow \widehat{X} = \{v \otimes \cdots \otimes v \mid v \in V\}$; X is *Veronese embedding* of $\mathbb{P}(V)$
- $G = GL(V_1) \times GL(V_2)$, $W = S^{d_1}V_1 \otimes S^{d_2}V_2 \Rightarrow \widehat{X} = \{v_1^{\otimes d_1} \otimes v_2^{\otimes d_2}\}$; X is $Segre-Veronese\ embedding$, etc.
- **Definition:** $\bullet \ \sigma_k^0 \widehat{X} = \{ w_1 + \cdots + w_k \mid w_i \in \widehat{X} \}$
- $\sigma_k \widehat{X} = \overline{\sigma_k^0 \widehat{X}} = \widehat{\sigma_k X}$ the *k*-th secant variety of \widehat{X}
- $\operatorname{rk}_X(T) = \min\{k : T \in \sigma_k^0 \widehat{X}\},\$
- $brk_X(T) = min\{k : T \in \sigma_k \widehat{X}\}$ —rank and border rank

• $n_1 \times n_2$ -matrices: \widehat{X} is the variety of rank ≤ 1 matrices, $\sigma_k^0 \widehat{X} = \sigma_k \widehat{X}$ the variety of (ordinary) rk $\leq k$ matrices. A decomposition of T of rank k corresponds to a factorisation $T = A \cdot B$ with $A \in \mathbb{C}^{n_1 \times k}$, $B \in \mathbb{C}^{k \times n_2}$

- $n_1 \times n_2$ -matrices: \widehat{X} is the variety of rank ≤ 1 matrices, $\sigma_k^0 \widehat{X} = \sigma_k \widehat{X}$ the variety of (ordinary) rk $\leq k$ matrices. A decomposition of T of rank k corresponds to a factorisation $T = A \cdot B$ with $A \in \mathbb{C}^{n_1 \times k}$, $B \in \mathbb{C}^{k \times n_2}$
- $e_1 \otimes e_2 \otimes e_2 + e_2 \otimes e_1 \otimes e_2 + e_2 \otimes e_2 \otimes e_1 \in S^3\mathbb{C}^2$ has rank 3 and border rank 2: limit of $t^{-1}((e_2 + te_1)^{\otimes 3} e_2^{\otimes 3})$ for $t \to 0$

- $n_1 \times n_2$ -matrices: \widehat{X} is the variety of rank ≤ 1 matrices, $\sigma_k^0 \widehat{X} = \sigma_k \widehat{X}$ the variety of (ordinary) rk $\leq k$ matrices. A decomposition of T of rank k corresponds to a factorisation $T = A \cdot B$ with $A \in \mathbb{C}^{n_1 \times k}$, $B \in \mathbb{C}^{k \times n_2}$
- $e_1 \otimes e_2 \otimes e_2 + e_2 \otimes e_1 \otimes e_2 + e_2 \otimes e_2 \otimes e_1 \in S^3\mathbb{C}^2$ has rank 3 and border rank 2: limit of $t^{-1}((e_2 + te_1)^{\otimes 3} e_2^{\otimes 3})$ for $t \to 0$
- a $T \in S^d V$ defines a flattening/catalecticant $\flat_{d-e,e} T : S^e V^* \to S^{d-e} V$, which has rank 1 if $T \in \widehat{X}$. Hence $(k+1) \times (k+1)$ -minors of $\flat_{d-e,e} T$ vanish for $T \in \sigma_k X$.

- $n_1 \times n_2$ -matrices: \widehat{X} is the variety of rank ≤ 1 matrices, $\sigma_k^0 \widehat{X} = \sigma_k \widehat{X}$ the variety of (ordinary) rk $\leq k$ matrices. A decomposition of T of rank k corresponds to a factorisation $T = A \cdot B$ with $A \in \mathbb{C}^{n_1 \times k}$, $B \in \mathbb{C}^{k \times n_2}$
- $e_1 \otimes e_2 \otimes e_2 + e_2 \otimes e_1 \otimes e_2 + e_2 \otimes e_2 \otimes e_1 \in S^3\mathbb{C}^2$ has rank 3 and border rank 2: limit of $t^{-1}((e_2 + te_1)^{\otimes 3} e_2^{\otimes 3})$ for $t \to 0$
- a $T \in S^d V$ defines a flattening/catalecticant $\flat_{d-e,e} T : S^e V^* \to S^{d-e} V$, which has rank 1 if $T \in \widehat{X}$. Hence $(k+1) \times (k+1)$ -minors of $\flat_{d-e,e} T$ vanish for $T \in \sigma_k X$.
- the 3 × 3-permanent $\sum_{\pi \in S_3} x_{1,\pi(1)} x_{2,\pi(2)} x_{3,\pi(3)} \in S^3(\mathbb{C}^9)$ has rank 16 (Shitov) and border rank 16 (Conner-Huang-Landsberg) \rightsquigarrow Amy Huang's talk.

(Non-)defectiveness

Definition: We expect dim $\sigma_k \widehat{X} = \min\{\dim W, k \dim \widehat{X}\};$ otherwise, $\sigma_k \widehat{X}$ is *defective*.

Remark: For d=2 (matrices), almost always defective, due to $A \cdot B = (A \cdot g) \cdot (g^{-1} \cdot B)$.

(Non-)defectiveness

Definition: We expect dim $\sigma_k \widehat{X} = \min\{\dim W, k \dim \widehat{X}\};$ otherwise, $\sigma_k \widehat{X}$ is *defective*.

Remark: For d=2 (matrices), almost always defective, due to $A \cdot B = (A \cdot g) \cdot (g^{-1} \cdot B)$.

Some known facts

- \exists very few defective secant varieties for $\widehat{X} \subseteq S^d \mathbb{C}^n$ (Veronese): all cases with d=2 plus four cases with $d \in \{3,4\}$. (Alexander-Hirschowitz)
- conjecture for secant varieties for Segre embeddings (Abo-Ottaviani-Peterson, work by many)
- $\widehat{X} \subseteq S^{d_1} V_1 \otimes S^{d_2} V_2$ has non defective $\sigma_k \widehat{X}$ for $d_1, d_2 \ge 3$ (Galuppi-Oneto \leadsto Francesco Galuppi's talk)

Assume dim $\sigma_k \widehat{X} = k \dim \widehat{X}$. Then a sufficiently general $T \in \sigma_k \widehat{X}$ has a finite number ℓ of decompositions into k terms.

Theorem

For $\widehat{X} = \{v^{\otimes d} \mid v \in V\} \subseteq S^d V$:

- if in addition $k \dim \widehat{X} < \dim S^d V \Rightarrow \ell = 1$, except in three cases, where $\ell = 2$ (Chiantini-Ottaviani-Vannieuwenhoven)
- if $k \dim \widehat{X} = \dim S^d V$, then almost always $\ell > 1$ (Galuppi-Mella).

(Non-)uniqueness of decompositions

Assume dim $\sigma_k \widehat{X} = k \dim \widehat{X}$. Then a sufficiently general $T \in \sigma_k \widehat{X}$ has a finite number ℓ of decompositions into k terms.

Theorem

For $\widehat{X} = \{v^{\otimes d} \mid v \in V\} \subseteq S^d V$:

- if in addition $k \dim \widehat{X} < \dim S^d V \Rightarrow \ell = 1$, except in three cases, where $\ell = 2$ (Chiantini-Ottaviani-Vannieuwenhoven)
- if $k \dim \widehat{X} = \dim S^d V$, then almost always $\ell > 1$ (Galuppi-Mella).
- \sim Luca Chiantini's talk: reducing a decomposition of $T \in S^d V$ with too many terms to one in rk(T) terms.
- → Elena Angelini's talk: specific ternary forms and their identifiability, in particular of degree 9.

Remark

 $\sigma_k X = \bigcup_R \langle R \rangle$ where R runs through all k-element subsets of $X \subseteq \mathbb{P} W$.

Definition: The k-th cactus variety of X is $\overline{\bigcup_R R}$ where the union is over all length-k subschemes of X. (Buczyńska-Buczyński, Kanev-Iarrobino)

Since for moderately large k, not every length-k is the limit of schemes of k reduced points, $\sigma_k X \subsetneq k$ -th cactus variety. Using this, B-B showed: many secant varieties of Veronese are *not* defined by minors of catalecticant matrices.

Remark

 $\sigma_k X = \bigcup_R \langle R \rangle$ where R runs through all k-element subsets of $X \subseteq \mathbb{P} W$.

Definition: The k-th cactus variety of X is $\overline{\bigcup_R R}$ where the union is over all length-k subschemes of X. (Buczyńska-Buczyński, Kanev-Iarrobino)

Since for moderately large k, not every length-k is the limit of schemes of k reduced points, $\sigma_k X \subsetneq k$ -th cactus variety. Using this, B-B showed: many secant varieties of Veronese are *not* defined by minors of catalecticant matrices.

→ Jarek Buczyński's talk: the cactus varieties to sufficiently ample embeddings of X are defined by minors of certain matrices of linear forms.

Apolarity

Already saw $S^eV^* \times S^dV \rightarrow S^{d-e}V$ —apolarity action; for $T \in S^dV$, $T^0 \subseteq SV^*$ is an ideal.

Apolarity lemma: $T \in S^d V$ admits a decomposition as $c_1 v_1^{\otimes d} + \cdots + c_k v_k^{\otimes d}$ iff the vanishing ideal of $[v_1], \dots, [v_k] \in \mathbb{P} V$ is contained in $T^0 \subseteq SV^*$.

Key ingredient in algorithms for symmetric tensor decomposition (many people, e.g. larrobino-Kanev), identifiability, etc.

Already saw $S^eV^* \times S^dV \to S^{d-e}V$ —apolarity action; for $T \in S^dV$, $T^0 \subseteq SV^*$ is an ideal.

Apolarity lemma: $T \in S^d V$ admits a decomposition as $c_1 v_1^{\otimes d} + \cdots + c_k v_k^{\otimes d}$ iff the vanishing ideal of $[v_1], \dots, [v_k] \in \mathbb{P} V$ is contained in $T^0 \subseteq SV^*$.

Key ingredient in algorithms for symmetric tensor decomposition (many people, e.g. larrobino-Kanev), identifiability, etc.

Recently extended to alternating tensors (Arrondo-Bernardi-Macias Marques-Mourrain).

ightharpoonupReynaldo Staffolani's talk: a version of apolarity for the minimal orbit X in $\mathbb{P}W$, W any irreducible $\mathrm{GL}(V)$ -representation.

Matrix rank generalises to tensors in *many* other ways!

Definition

The multilinear/Tucker rank of $T \in V_1 \otimes \cdots \otimes V_d$ is $(\dim U_1, ..., \dim U_d) \in \mathbb{N}^d$ where $U_i \subseteq V_i$ is the image of the corresponding flattening $T : \bigotimes_{j \neq i} V_i^* \to V_i$.

Matrix rank generalises to tensors in *many* other ways!

Definition

The multilinear/Tucker rank of $T \in V_1 \otimes \cdots \otimes V_d$ is $(\dim U_1, ..., \dim U_d) \in \mathbb{N}^d$ where $U_i \subseteq V_i$ is the image of the corresponding flattening $T : \bigotimes_{j \neq i} V_i^* \to V_i$.

Definition

The *slice rank* of $T \in V_1 \otimes \cdots \otimes V_d$ is $\min\{k : T \in \sigma_k^0 Y\}$ where $Y = \bigcup_{i=1}^d \{v \otimes S \mid v \in V_i, S \in \bigotimes_{j \neq i} V_j\}$

(Tao's description of Ellenberg-Gijswijt's resolution of the cap set problem)

Definition

The *geometric rank* of $T \in V_1 \otimes V_2 \otimes V_3$ is $\operatorname{codim}_{V_1^* \times V_2^*} \{ (x, y) \mid T(x \otimes y) = 0 \in V_3 \}$

Example: If $V_1 = V_2 = V_3 = V$ of dimension n > 3 over a quasi-algebraically closed field K, $T \in \bigwedge^3 V$ is *alternating*, then \exists linearly independent $x, y \in V^*$ such that $T(x \otimes y) = 0$ (Draisma-Shaw). The geometric rank is generically n - 2 (for n even) respectively n - 1 (for n odd).

Definition

The *geometric rank* of $T \in V_1 \otimes V_2 \otimes V_3$ is $\operatorname{codim}_{V_1^* \times V_2^*} \{ (x, y) \mid T(x \otimes y) = 0 \in V_3 \}$

Example: If $V_1 = V_2 = V_3 = V$ of dimension n > 3 over a quasi-algebraically closed field K, $T \in \bigwedge^3 V$ is *alternating*, then \exists linearly independent $x, y \in V^*$ such that $T(x \otimes y) = 0$ (Draisma-Shaw). The geometric rank is generically n - 2 (for n even) respectively n - 1 (for n odd).

 \rightsquigarrow Jeroen Zuiddam's talk geometric rank \leq slice rank (Kopparty, Moshkovitz, Zuiddam)

Tensors over IR

Unlike real matrices, a *real* tensor T with $d \ge 3$ can have $\operatorname{rk}_{\mathbb{R}}(T) > \operatorname{rk}_{\mathbb{C}}(T)$.

Definition

k is a *typical rank* if the set of tensors $T \in W_{\mathbb{R}}$ with real rank k has a nonempty interior.

Unlike real matrices, a *real* tensor T with $d \ge 3$ can have $\operatorname{rk}_{\mathbb{R}}(T) > \operatorname{rk}_{\mathbb{C}}(T)$.

Definition

k is a *typical rank* if the set of tensors $T \in W_{\mathbb{R}}$ with real rank k has a nonempty interior.

Theorem

The typical ranks form an interval of integers, starting with the generic rank over ℂ. (Bernardi-Blekherman-Ottaviani)

Enter the orthogonal group

still work over \mathbb{R} , and equip each V_i with an inner product

Definition: $T \in V_1 \otimes \cdots \otimes V_d$ is *odeco* if $T = \sum_{i=1}^k \lambda_i v_{i,1} \otimes \cdots \otimes v_{i,d}$ where $\forall j : v_{1,j}, \dots, v_{k,j}$ orthonormal in V_j . (Variant for $S^d V$).

If all $V_i = V$ of dimension n, these form a closed semialgebraic set of dimension $n + d \cdot (n(n-1)/2)$, defined by quadratic equations (Boralevi-D-Horobeţ-Robeva).

Enter the orthogonal group

still work over \mathbb{R} , and equip each V_i with an inner product

Definition: $T \in V_1 \otimes \cdots \otimes V_d$ is *odeco* if $T = \sum_{i=1}^k \lambda_i v_{i,1} \otimes \cdots \otimes v_{i,d}$ where $\forall j : v_{1,j}, \dots, v_{k,j}$ orthonormal in V_j . (Variant for $S^d V$).

If all $V_i = V$ of dimension n, these form a closed semialgebraic set of dimension $n + d \cdot (n(n-1)/2)$, defined by quadratic equations (Boralevi-D-Horobet-Robeva).

- Ke Ye's talk: algorithm for low-rank approximation by odeco tensors.
- Whenever the Konstantin Usevich's talk: decomposition of symmetric tensors T as $\sum_{i} \lambda_{i} v_{i}^{\otimes d}$, $V = (v_{1}|...|v_{k})$ norm-1 columns $VV^{T} = \frac{k}{n} I_{n}$ (conjecture by Oeding-Robeva-Sturmfels).

still work over \mathbb{R} , and equip each V_i with an inner product

Definition: $T \in V_1 \otimes \cdots \otimes V_d$ is *odeco* if $T = \sum_{i=1}^k \lambda_i v_{i,1} \otimes \cdots \otimes v_{i,d}$ where $\forall j : v_{1,j}, \dots, v_{k,j}$ orthonormal in V_j . (Variant for $S^d V$).

If all $V_i = V$ of dimension n, these form a closed semialgebraic set of dimension $n + d \cdot (n(n-1)/2)$, defined by quadratic equations (Boralevi-D-Horobet-Robeva).

- Whenever the Konstantin Usevich's talk: decomposition of symmetric tensors T as $\sum_{i} \lambda_{i} v_{i}^{\otimes d}$, $V = (v_{1}|...|v_{k})$ norm-1 columns $VV^{T} = \frac{k}{n}I_{n}$ (conjecture by Oeding-Robeva-Sturmfels).

Thank you!