Algebra and Geometry of Tensors 2:
Structured Tensors

Jan Draisma
University of Bern
and TU Eindhoven

SIAM AG 21



(Structured) tensors 2.

Definition. An order-d tensor is an ny x --- x ny block of
C-numbers;or:a T € V4 ®---® Vg, where dim V), = ny.

- =

d aj ai1| 12| a3
ao dpi | doo | Az3

On tensors acts GL(V4) x --- x GL( Vy).



(Structured) tensors 2-2

Definition. An order-d tensor is an ny X --- X ny block of
C-numbers;or:a T € V4 ®---® Vg, where dim V), = ny.

- =

d a1 a1 | d12| a13
do do{ | dop| ao3

On tensors acts GL(Vq) x --- x GL(Vy).

Structure: usually an interesting subspace of tensors, e.g.:
e symmetric tensors (homogeneous polynomials): V; =V,

SYV)={T|VoeSy:0(T)=T)} (GL(V) acts);
e partially symmetric tensors: e.g. S?°C? @ C3 (GL, x GL3);
e a single interesting tensor (symmetry?)



The simplest tensors 3.

Fact: W an irreducible representation of a connected alge-
braic group G, then IP W has a unique minimal G-orbit X.

e G=GL(V{) x- - xGL(Vy), W=V, ® - @ Vy= X =
{vi®---®vy| Vv, e V;}; Xis Segre embedding of [T, PV,
e G=GL\V),W=8WV=X={ve---@v|ve V} X
is Veronese embedding of IP( V)

e G = GL(V4) xGL(V,), W = 8%V, @ 8%V, = X =

(v @ vE%}; X is Segre-Veronese embedding, etc.
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Fact: W an irreducible representation of a connected alge-
braic group G, then IP W has a unique minimal G-orbit X.

e G=GL(Vy)x---xGL(Vy), W=V, ® - @ Vy= X =
{vi®---®vy| Vv, e V;}; Xis Segre embedding of [T, PV,
e G=GL\V),W=8WV=X={ve---@v|ve V} X
is Veronese embedding of IP( V)

e G = GL(V4) xGL(V,), W = 8%V, @ 8%V, = X =

(v @ vE%}; X is Segre-Veronese embedding, etc.

Definition: e a,?)A( ={wy+- - Fw | W€ )A(}

o ok X = 09X = 0y X the k-th secant variety of X

o rky(T) =min{k: T & a,?)A(},

brkx(T) = min{k : T € oy X}—rank and border rank




Examples/remarks .

o n1 X np-matrices: X is the variety of rank < 1 matrices,

X = akX the variety of (ordinary) rk < k matrices. A
decomposmon of T of rank k corresponds to a factorisation
T =A-Bwith Ac CM*K B e Ckxn
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e a T € S9V defines a flattening/catalecticant by e eT :

Sev* — 8d9-ey which has rank 1 if T € X. Hence
(k+1) x (k4 1)-minors of by_¢ o T vanish for T € oy X.
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o n1 X np-matrices: X is the variety of rank < 1 matrices,

X = akX the variety of (ordinary) rk < k matrices. A
decomposmon of T of rank k corresponds to a factorisation
T =A-Bwith Ac CM*K B e Ckxn

01 XX+ ErREXREe+E0XKEK e c S3C? has
rank 3 and border rank 2: limit of 1= ((e; + tey)®3 — e5°)
fort — 0

e a T € S9V defines a flattening/catalecticant by e eT :

Sev* — 8d9-ey which has rank 1 if T € X. Hence
(k+1) x (k4 1)-minors of by_¢ o T vanish for T € oy X.

e the 3 X 3-permanent ZﬂES;; X1,7t(1)X2,7T(2)X3,7.[(3) c S3 (Cg)
has rank 16 (Shitov) and border rank 16 (Conner-Huang-
Landsberg) ~~ Amy Huang’s talk.



(Non-)defectiveness

Definition: We expect dim o, X = min{dim W, kdim X};
otherwise, o, X Is defective.

Remark: For d = 2 (matrices), almost always defective,
dueto A-B=(A-g)-(g ' B).

- 1



(Non-)defectiveness

Definition: We expect dim o, X = min{dim W, kdim X};
otherwise, o, X Is defective.

Remark: For d = 2 (matrices), almost always defective,
dueto A-B=(A-g) (g '-B).

Some known facts R

e 3 very few defective secant varieties for X C S9C"
(Veronese): all cases with d = 2 plus four cases with
d € {3,4}. (Alexander-Hirschowitz)

e conjecture for secant varieties for Segre embeddings
(Abo-Ottaviani-Peterson, work by many)

e X C 8%V, ® S%V, has non defective ¢, X for dy, db > 3
(Galuppi-Oneto ~~ Francesco Galuppi’s talk)



(Non-)uniqueness of decompositions 6- 1

Assume dim o X = kdim X. Then a sufficiently general T €
akX has a finite number £ of decompositions into k terms.

Theorem

For X = {v®? | v ¢ vV} C sV

e if in addition kdim X < dim SdV = ¢ = 1, except in three
cases, where £ = 2 (Chiantini-Ottaviani- Vannleuwenhoven)
e if kdim X = dim S?V, then almost always ¢ > 1 (Galuppi-

Mella).



(Non-)uniqueness of decompositions 6

Assume dim o X = kdim X. Then a sufficiently general T €
akX has a finite number £ of decompositions into k terms.

Theorem

For X = {v®? | v ¢ vV} C sV

e if in addition kdim X < dim SdV = ¢ = 1, except in three
cases, where £ = 2 (Chiantini-Ottaviani- Vannleuwenhoven)

e if kdim X = dim S?V, then almost always ¢ > 1 (Galuppi-
Mella).

~ Luca Chiantini’s talk: reducing a decomposition of T &€
SV with too many terms to one in rk(T) terms.

~ Elena Angelini's talk: specific ternary forms and their
identifiability, in particular of degree 9.



Cactus varieties ;.

Remark
ox X = Ug(R) where R runs through all k-element subsets
of X CPW.

Definition: The k-th cactus variety of X is | Jg R where the
union is over all length-k subschemes of X. (Buczynska-
Buczynski, Kanev-larrobino)

Since for moderately large k, not every length-k is the limit
of schemes of k reduced points, cx X C k-th cactus variety.
Using this, B-B showed: many secant varieties of Veronese
are not defined by minors of catalecticant matrices.
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Cactus varieties ;.

Remark
ox X = Ug(R) where R runs through all k-element subsets
of X CPW.

Definition: The k-th cactus variety of X is | Jg R where the
union is over all length-k subschemes of X. (Buczynska-
Buczynski, Kanev-larrobino)

Since for moderately large k, not every length-k is the limit
of schemes of k reduced points, cx X C k-th cactus variety.
Using this, B-B showed: many secant varieties of Veronese
are not defined by minors of catalecticant matrices.

~ Jarek Buczynski’s talk: the cactus varieties to sufficiently
ample embeddings of X are defined by minors of certain
matrices of linear forms.



Apolarity 5.

Already saw SeV* x SV — S9—€V —apolarity action; for
T ¢S89V, T0 C SV*is an ideal.

Apolarity lemma: T € S9V admits a decomposition as
crvP9 4.+ v iff the vanishing ideal of

V4], ..., [vk] € PV is contained in T® C SV*.

Key ingredient in algorithms for symmetric tensor decompo-
sition (many people, e.g. larrobino-Kanev), identifiability, etc.
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Already saw SeV* x SV — S9—€V —apolarity action; for
T ¢S89V, T0 C SV*is an ideal.

Apolarity lemma: T € S9V admits a decomposition as
crvP9 4.+ v iff the vanishing ideal of

V4], ..., [vk] € PV is contained in T® C SV*.

Key ingredient in algorithms for symmetric tensor decompo-
sition (many people, e.g. larrobino-Kanev), identifiability, etc.

Recently extended to alternating tensors (Arrondo-Bernardi-
Macias Marques-Mourrain).

~» Reynaldo Staffolani’s talk: a version of apolarity for
the minimal orbit X in PW, W any irreducible GL(V)-

representation.



Other rank notions ..

Matrix rank generalises to tensors in many other ways!
Definition

The multilinear/Tucker rank of T € Vi ® ---® V4 is
(dim Uy, ..., dim Uy) € IN? where U; C V; is the image of
the corresponding flattening T : &), V/* — V.

~» Khazhgali Kozhasov's talk: over IR, the tensors of fixed

multilinear rank form a minimal manifold (Heaton-Kozhasov-
Venturello)
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Other rank notions ..

Matrix rank generalises to tensors in many other ways!
Definition

The multilinear/Tucker rank of T € Vi ® ---® V4 is
(dim Uy, ..., dim Uy) € IN? where U; C V; is the image of
the corresponding flattening T : &), V/* — V.

~» Khazhgali Kozhasov's talk: over IR, the tensors of fixed

multilinear rank form a minimal manifold (Heaton-Kozhasov-
Venturello)

Definition

The slicerankof T€ Vi @ - @ Vyismin{k: T € 0 Y}
where Y = U?:1{V® S ‘ velV,Se ®j7g, Vj}

(Tao’s description of Ellenberg-Gijswijt’'s resolution of the
cap set problem)



Other rank notions 0

Definition
The geometricrankof T € V4 ® Vo ® V3 is
codimy: vz {(X,y) | T(x®@y) =0 € Va}

Example: If V; = Vb, = V3 = V of dimension n > 3 over a
quasi-algebraically closed field K, T € A® V is alternating,
then 3 linearly independent x,y € V* suchthat T(x® y) =
0 (Draisma-Shaw). The geometric rank is generically n — 2
(for n even) respectively n— 1 (for n odd).
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Other rank notions 0

Definition
The geometricrankof T € V4 ® Vo ® V3 is
codimy: vz {(X,y) | T(x®@y) =0 € Va}

Example: If V; = Vb, = V3 = V of dimension n > 3 over a
quasi-algebraically closed field K, T € A® V is alternating,
then 3 linearly independent x,y € V* suchthat T(x® y) =
0 (Draisma-Shaw). The geometric rank is generically n — 2
(for n even) respectively n— 1 (for n odd).

~ Jeroen Zuiddam’s talk geometric rank < slice rank
(Kopparty, Moshkovitz, Zuiddam)



Tensors over R .-

Unlike real matrices, a realtensor T with d > 3 can have
rkr (T) > rke(T).

Definition
K is a typical rank if the set of tensors T € Wr with real rank
k has a nonempty interior.



Tensors over R .-

Unlike real matrices, a realtensor T with d > 3 can have
rkr (T) > rke(T).

Definition
K is a typical rank if the set of tensors T € Wr with real rank
k has a nonempty interior.

Theorem
The typical ranks form an interval of integers, starting with
the generic rank over C. (Bernardi-Blekherman-Ottaviani)

~» Chiara Brambilla’s talk: for binary forms, algebraic bound-
aries between the various typical ranks are unions of dual
varieties of coincident root loci.



Enter the orthogonal group 12-1

still work over IR, and equip each V; with an inner product

Definition: T € V; ®---® Vyis odecoif T = YK . Ajvi1 ®
-+ @ Vi g Where Vj : vy j,..., Vg j orthonormal in V;. (Variant
for S9V).

If all V; = V of dimension n, these form a closed semi-
algebraic set of dimension n+d - (n(n—1)/2), defined by
guadratic equations (Boralevi-D-Horobet-Robeva).
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~~ Ke Ye's talk: algorithm for low-rank approximation by
odeco tensors.

~» Konstantin Usevich’s talk: decomposition of symmetric
tensors T as Y;A;v2%, V = (vi]...|vk) norm-1 columns

VVT = X, (conjecture by Oeding-Robeva-Sturmfels).



Enter the orthogonal group 12

still work over IR, and equip each V; with an inner product

Definition: T € V; ®---® Vyis odecoif T = YK . Ajvi1 ®
-+ @ Vi g Where Vj : vy j,..., Vg j orthonormal in V;. (Variant
for S9V).

If all V; = V of dimension n, these form a closed semi-

algebraic set of dimension n+d - (n(n—1)/2), defined by
guadratic equations (Boralevi-D-Horobet-Robeva).

~~ Ke Ye's talk: algorithm for low-rank approximation by
odeco tensors.

~» Konstantin Usevich’s talk: decomposition of symmetric
tensors T as Y;A;v2%, V = (vi]...|vk) norm-1 columns

VVT = X, (conjecture by Oeding-Robeva-Sturmfels).

Thank you!
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