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2 - 1(Structured) tensors

Definition. An order-d tensor is an n1 × · · · × nd block of
C-numbers; or: a T ∈ V1 ⊗ · · · ⊗ Vd , where dim Vk = nk .
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On tensors acts GL(V1)× · · · ×GL(Vd ).
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On tensors acts GL(V1)× · · · ×GL(Vd ).

Structure: usually an interesting subspace of tensors, e.g.:
• symmetric tensors (homogeneous polynomials): Vi = V ,
Sd (V ) = {T | ∀σ ∈ Sd : σ(T ) = T} (GL(V ) acts);
• partially symmetric tensors: e.g. S2C2 ⊗C3 (GL2 ×GL3);
• a single interesting tensor (symmetry?)



3 - 1The simplest tensors

Fact: W an irreducible representation of a connected alge-
braic group G, then PW has a unique minimal G-orbit X .

• G = GL(V1)× · · · ×GL(Vd ), W = V1 ⊗ · · · ⊗ Vd ⇒ X̂ =
{v1 ⊗ · · · ⊗ vd | vi ∈ Vi}; X is Segre embedding of ∏i PVi
• G = GL(V ), W = Sd V ⇒ X̂ = {v ⊗ · · · ⊗ v | v ∈ V}; X
is Veronese embedding of P(V )

• G = GL(V1) × GL(V2), W = Sd1V1 ⊗ Sd2V2 ⇒ X̂ =

{v⊗d1
1 ⊗ v⊗d2

2 }; X is Segre-Veronese embedding, etc.
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• G = GL(V1) × GL(V2), W = Sd1V1 ⊗ Sd2V2 ⇒ X̂ =

{v⊗d1
1 ⊗ v⊗d2

2 }; X is Segre-Veronese embedding, etc.

Definition: • σ0
k X̂ = {w1 + · · ·+ wk | wi ∈ X̂}

• σk X̂ = σ0
k X̂ = σ̂k X the k -th secant variety of X̂

• rkX (T ) = min{k : T ∈ σ0
k X̂},

brkX (T ) = min{k : T ∈ σk X̂}—rank and border rank



4 - 1Examples/remarks

• n1 × n2-matrices: X̂ is the variety of rank ≤ 1 matrices,
σ0

k X̂ = σk X̂ the variety of (ordinary) rk ≤ k matrices. A
decomposition of T of rank k corresponds to a factorisation
T = A · B with A ∈ Cn1×k , B ∈ Ck×n2
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• a T ∈ Sd V defines a flattening/catalecticant [d−e,eT :
SeV ∗ → Sd−eV , which has rank 1 if T ∈ X̂ . Hence
(k + 1)× (k + 1)-minors of [d−e,eT vanish for T ∈ σk X .
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• the 3× 3-permanent ∑π∈S3
x1,π(1)x2,π(2)x3,π(3) ∈ S3(C9)

has rank 16 (Shitov) and border rank 16 (Conner-Huang-
Landsberg) Amy Huang’s talk.

• a T ∈ Sd V defines a flattening/catalecticant [d−e,eT :
SeV ∗ → Sd−eV , which has rank 1 if T ∈ X̂ . Hence
(k + 1)× (k + 1)-minors of [d−e,eT vanish for T ∈ σk X .



5 - 1(Non-)defectiveness

Definition: We expect dim σk X̂ = min{dim W , k dim X̂};
otherwise, σk X̂ is defective.

Remark: For d = 2 (matrices), almost always defective,
due to A · B = (A · g) · (g−1 · B).



5 - 2(Non-)defectiveness

Definition: We expect dim σk X̂ = min{dim W , k dim X̂};
otherwise, σk X̂ is defective.

Some known facts
• ∃ very few defective secant varieties for X̂ ⊆ Sd Cn

(Veronese): all cases with d = 2 plus four cases with
d ∈ {3, 4}. (Alexander-Hirschowitz)
• conjecture for secant varieties for Segre embeddings
(Abo-Ottaviani-Peterson, work by many)

Remark: For d = 2 (matrices), almost always defective,
due to A · B = (A · g) · (g−1 · B).

• X̂ ⊆ Sd1V1 ⊗ Sd2V2 has non defective σk X̂ for d1, d2 ≥ 3
(Galuppi-Oneto Francesco Galuppi’s talk)



6 - 1(Non-)uniqueness of decompositions

Assume dim σk X̂ = k dim X̂ . Then a sufficiently general T ∈
σk X̂ has a finite number ` of decompositions into k terms.

Theorem
For X̂ = {v⊗d | v ∈ V} ⊆ Sd V :
• if in addition k dim X̂ < dim Sd V ⇒ ` = 1, except in three
cases, where ` = 2 (Chiantini-Ottaviani-Vannieuwenhoven)
• if k dim X̂ = dim Sd V , then almost always ` > 1 (Galuppi-
Mella).



6 - 2(Non-)uniqueness of decompositions

Assume dim σk X̂ = k dim X̂ . Then a sufficiently general T ∈
σk X̂ has a finite number ` of decompositions into k terms.

Theorem
For X̂ = {v⊗d | v ∈ V} ⊆ Sd V :
• if in addition k dim X̂ < dim Sd V ⇒ ` = 1, except in three
cases, where ` = 2 (Chiantini-Ottaviani-Vannieuwenhoven)
• if k dim X̂ = dim Sd V , then almost always ` > 1 (Galuppi-
Mella).

 Luca Chiantini’s talk: reducing a decomposition of T ∈
Sd V with too many terms to one in rk(T ) terms.
 Elena Angelini’s talk: specific ternary forms and their
identifiability, in particular of degree 9.



7 - 1Cactus varieties

Remark
σk X =

⋃
R〈R〉 where R runs through all k -element subsets

of X ⊆ PW .

Definition: The k -th cactus variety of X is
⋃

R R where the
union is over all length-k subschemes of X . (Buczyńska-
Buczyński, Kanev-Iarrobino)

Since for moderately large k , not every length-k is the limit
of schemes of k reduced points, σk X ( k -th cactus variety.
Using this, B-B showed: many secant varieties of Veronese
are not defined by minors of catalecticant matrices.
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Definition: The k -th cactus variety of X is
⋃

R R where the
union is over all length-k subschemes of X . (Buczyńska-
Buczyński, Kanev-Iarrobino)

Since for moderately large k , not every length-k is the limit
of schemes of k reduced points, σk X ( k -th cactus variety.
Using this, B-B showed: many secant varieties of Veronese
are not defined by minors of catalecticant matrices.
 Jarek Buczyński’s talk: the cactus varieties to sufficiently
ample embeddings of X are defined by minors of certain
matrices of linear forms.



8 - 1Apolarity

Already saw SeV ∗ × Sd V → Sd−eV —apolarity action; for
T ∈ Sd V , T 0 ⊆ SV ∗ is an ideal.

Key ingredient in algorithms for symmetric tensor decompo-
sition (many people, e.g. Iarrobino-Kanev), identifiability, etc.

Apolarity lemma: T ∈ Sd V admits a decomposition as
c1v⊗d

1 + · · ·+ ck v⊗d
k iff the vanishing ideal of

[v1], ... , [vk ] ∈ PV is contained in T 0 ⊆ SV ∗.
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Already saw SeV ∗ × Sd V → Sd−eV —apolarity action; for
T ∈ Sd V , T 0 ⊆ SV ∗ is an ideal.

Key ingredient in algorithms for symmetric tensor decompo-
sition (many people, e.g. Iarrobino-Kanev), identifiability, etc.

Recently extended to alternating tensors (Arrondo-Bernardi-
Macias Marques-Mourrain).

 Reynaldo Staffolani’s talk: a version of apolarity for
the minimal orbit X in PW , W any irreducible GL(V )-
representation.

Apolarity lemma: T ∈ Sd V admits a decomposition as
c1v⊗d

1 + · · ·+ ck v⊗d
k iff the vanishing ideal of

[v1], ... , [vk ] ∈ PV is contained in T 0 ⊆ SV ∗.



9 - 1Other rank notions

Matrix rank generalises to tensors in many other ways!
Definition
The multilinear/Tucker rank of T ∈ V1 ⊗ · · · ⊗ Vd is
(dim U1, ... , dim Ud ) ∈ Nd where Ui ⊆ Vi is the image of
the corresponding flattening T :

⊗
j 6=i V ∗j → Vi .

 Khazhgali Kozhasov’s talk: over R, the tensors of fixed
multilinear rank form a minimal manifold (Heaton-Kozhasov-
Venturello)
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(dim U1, ... , dim Ud ) ∈ Nd where Ui ⊆ Vi is the image of
the corresponding flattening T :

⊗
j 6=i V ∗j → Vi .

 Khazhgali Kozhasov’s talk: over R, the tensors of fixed
multilinear rank form a minimal manifold (Heaton-Kozhasov-
Venturello)

Definition
The slice rank of T ∈ V1 ⊗ · · · ⊗ Vd is min{k : T ∈ σ0

k Y}
where Y =

⋃d
i=1{v ⊗ S | v ∈ Vi , S ∈ ⊗

j 6=i Vj}
(Tao’s description of Ellenberg-Gijswijt’s resolution of the
cap set problem)



10 - 1Other rank notions

Definition
The geometric rank of T ∈ V1 ⊗ V2 ⊗ V3 is
codimV ∗1×V ∗2

{(x , y) | T (x ⊗ y) = 0 ∈ V3}

Example: If V1 = V2 = V3 = V of dimension n > 3 over a
quasi-algebraically closed field K , T ∈ ∧3 V is alternating,
then ∃ linearly independent x , y ∈ V ∗ such that T (x ⊗ y) =
0 (Draisma-Shaw). The geometric rank is generically n− 2
(for n even) respectively n− 1 (for n odd).
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Definition
The geometric rank of T ∈ V1 ⊗ V2 ⊗ V3 is
codimV ∗1×V ∗2

{(x , y) | T (x ⊗ y) = 0 ∈ V3}

Example: If V1 = V2 = V3 = V of dimension n > 3 over a
quasi-algebraically closed field K , T ∈ ∧3 V is alternating,
then ∃ linearly independent x , y ∈ V ∗ such that T (x ⊗ y) =
0 (Draisma-Shaw). The geometric rank is generically n− 2
(for n even) respectively n− 1 (for n odd).

 Jeroen Zuiddam’s talk geometric rank ≤ slice rank
(Kopparty, Moshkovitz, Zuiddam)



11 - 1Tensors over R

Unlike real matrices, a real tensor T with d ≥ 3 can have
rkR(T ) > rkC(T ).

Definition
k is a typical rank if the set of tensors T ∈ WR with real rank
k has a nonempty interior.



11 - 2Tensors over R

Unlike real matrices, a real tensor T with d ≥ 3 can have
rkR(T ) > rkC(T ).

Definition
k is a typical rank if the set of tensors T ∈ WR with real rank
k has a nonempty interior.

Theorem
The typical ranks form an interval of integers, starting with
the generic rank over C. (Bernardi-Blekherman-Ottaviani)

 Chiara Brambilla’s talk: for binary forms, algebraic bound-
aries between the various typical ranks are unions of dual
varieties of coincident root loci.



12 - 1Enter the orthogonal group

still work over R, and equip each Vi with an inner product

Definition: T ∈ V1 ⊗ · · · ⊗ Vd is odeco if T = ∑k
i=1 λivi ,1 ⊗

· · · ⊗ vi ,d where ∀j : v1,j , ... , vk ,j orthonormal in Vj . (Variant
for Sd V ).
If all Vi = V of dimension n, these form a closed semi-
algebraic set of dimension n + d · (n(n− 1)/2), defined by
quadratic equations (Boralevi-D-Horobeţ-Robeva).
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 Ke Ye’s talk: algorithm for low-rank approximation by
odeco tensors.
 Konstantin Usevich’s talk: decomposition of symmetric
tensors T as ∑i λiv⊗d

i , V = (v1| ... |vk ) norm-1 columns
VV T = k

n In (conjecture by Oeding-Robeva-Sturmfels).
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still work over R, and equip each Vi with an inner product

Definition: T ∈ V1 ⊗ · · · ⊗ Vd is odeco if T = ∑k
i=1 λivi ,1 ⊗

· · · ⊗ vi ,d where ∀j : v1,j , ... , vk ,j orthonormal in Vj . (Variant
for Sd V ).
If all Vi = V of dimension n, these form a closed semi-
algebraic set of dimension n + d · (n(n− 1)/2), defined by
quadratic equations (Boralevi-D-Horobeţ-Robeva).
 Ke Ye’s talk: algorithm for low-rank approximation by
odeco tensors.
 Konstantin Usevich’s talk: decomposition of symmetric
tensors T as ∑i λiv⊗d

i , V = (v1| ... |vk ) norm-1 columns
VV T = k

n In (conjecture by Oeding-Robeva-Sturmfels).

Thank you!
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