Higher Secants of Sato's Grassmannian

Jan Draisma TU Eindhoven

MPI Bonn, October 29, 2013

Grassmannians: functoriality and duality

V a fin-dim vector space over an infinite field K $\leadsto \mathbf{Gr}_p(V) := \{v_1 \land \cdots \land v_p \mid v_i \in V\} \subseteq \bigwedge^p V$ cone over Grassmannian (rank-one alternating tensors)

V a fin-dim vector space over an infinite field K $\leadsto \mathbf{Gr}_p(V) := \{v_1 \land \cdots \land v_p \mid v_i \in V\} \subseteq \bigwedge^p V$ cone over Grassmannian (rank-one alternating tensors)

1. if $\varphi: V \to W$ linear

 $\rightsquigarrow \bigwedge^p \varphi : \bigwedge^p V \rightarrow \bigwedge^p W$

maps $\mathbf{Gr}_p(V) \to \mathbf{Gr}_p(W)$

V a fin-dim vector space over an infinite field K $\leadsto \mathbf{Gr}_p(V) := \{v_1 \land \cdots \land v_p \mid v_i \in V\} \subseteq \bigwedge^p V$ cone over Grassmannian (rank-one alternating tensors)

Two properties:

1. if $\varphi: V \to W$ linear $\rightsquigarrow \bigwedge^p \varphi: \bigwedge^p V \to \bigwedge^p W$ maps $\mathbf{Gr}_p(V) \to \mathbf{Gr}_p(W)$

2. if dim V =: n + p with $n, p \ge 0$ \rightsquigarrow natural map $\bigwedge^p V \to (\bigwedge^n V)^* \to \bigwedge^n (V^*)$ maps $\mathbf{Gr}_p(V) \to \mathbf{Gr}_n(V^*)$

Rules X_0, X_1, X_2, \dots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

Rules X_0, X_1, X_2, \dots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

form a *Plücker variety* if, for dim V = n + p,

1.
$$\varphi: V \to W \leadsto \bigwedge^p \varphi \text{ maps } \mathbf{X}_p(V) \to \mathbf{X}_p(W)$$

2.
$$\bigwedge^p V \to \bigwedge^n(V^*)$$
 maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$

Rules X_0, X_1, X_2, \dots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

form a *Plücker variety* if, for dim V = n + p,

1.
$$\varphi: V \to W \leadsto \bigwedge^p \varphi \text{ maps } \mathbf{X}_p(V) \to \mathbf{X}_p(W)$$

2.
$$\bigwedge^p V \to \bigwedge^n(V^*)$$
 maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$

X, Y Plücker varieties \rightsquigarrow so are

 $\mathbf{X} + \mathbf{Y}$ (join), $\tau \mathbf{X}$ (tangential),

 $X \cup Y, X \cap Y$

Rules X_0, X_1, X_2, \dots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

form a *Plücker variety* if, for dim V = n + p,

1.
$$\varphi: V \to W \leadsto \bigwedge^p \varphi \text{ maps } \mathbf{X}_p(V) \to \mathbf{X}_p(W)$$

2.
$$\bigwedge^p V \to \bigwedge^n(V^*)$$
 maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$

Constructions

X, Y Plücker varieties \rightsquigarrow so are

X + Y (join), τX (tangential),

 $X \cup Y, X \cap Y$

skew analogue of Snowden's Δ -varieties

A Plücker variety $\{\mathbf{X}_p\}_p$ is bounded if $\mathbf{X}_2(V) \neq \bigwedge^2 V$ for dim V sufficiently large.

A Plücker variety $\{\mathbf{X}_p\}_p$ is bounded if $\mathbf{X}_2(V) \neq \bigwedge^2 V$ for dim V sufficiently large.

Main Theorem

Any bounded Plücker variety is defined set-theoretically in bounded degree, by finitely many equations *up to symmetry*.

A Plücker variety $\{\mathbf{X}_p\}_p$ is bounded if $\mathbf{X}_2(V) \neq \bigwedge^2 V$ for dim V sufficiently large.

Main Theorem

Any bounded Plücker variety is defined set-theoretically in bounded degree, by finitely many equations *up to symmetry*.

Theorem

For any fixed bounded Plücker variety there exists a polynomial-time membership test.

A Plücker variety $\{\mathbf{X}_p\}_p$ is bounded if $\mathbf{X}_2(V) \neq \bigwedge^2 V$ for dim V sufficiently large.

Any bounded Plücker variety is defined set-theoretically in bounded degree, by finitely many equations *up to symmetry*.

Theorem

For any fixed bounded Plücker variety there exists a polynomial-time membership test.

Theorems apply, in particular, to $k\mathbf{Gr} = \{\text{alternating tensors of alternating } rank \leq k\}$

A ring R with a group G acting on it is G-Noetherian if every G-stable ideal of R is generated by finitely many G-orbits.

A ring R with a group G acting on it is G-Noetherian if every G-stable ideal of R is generated by finitely many G-orbits.

Theorem (Cohen 1987, Hillar-Sullivant 2009) $R = K[x_{ij} | i = 1,...,k; j \in \mathbb{N}]$ is G-Noetherian for $G = \text{Sym}(\mathbb{N})$ with $\pi x_{ij} = x_{i\pi(j)}$.

A ring R with a group G acting on it is G-Noetherian if every G-stable ideal of R is generated by finitely many G-orbits.

Theorem (Cohen 1987, Hillar-Sullivant 2009)

 $R = K[x_{ij} | i = 1,...,k; j \in \mathbb{N}]$ is G-Noetherian for $G = \operatorname{Sym}(\mathbb{N})$ with $\pi x_{ij} = x_{i\pi(j)}$.

Lots of applications: algebraic statistics, multilinear algebra, ... but not needed today.

A topological space X with a group G acting on it is G-Noetherian if every chain $X \supseteq X_1 \supseteq X_2 \supseteq \ldots$ of G-stable closed subsets stabilises.

A topological space X with a group G acting on it is G-Noetherian if every chain $X \supseteq X_1 \supseteq X_2 \supseteq \ldots$ of G-stable closed subsets stabilises.

Remark

If R is a G-Noetherian K-algebra, then $\operatorname{Hom}_{K-\operatorname{alg}}(R,K)$ G-Noetherian topological space with Zariski topology. (*Converse not true!*)

A topological space X with a group G acting on it is G-Noetherian if every chain $X \supseteq X_1 \supseteq X_2 \supseteq \ldots$ of G-stable closed subsets stabilises.

Remark

If R is a G-Noetherian K-algebra, then $\operatorname{Hom}_{K-\operatorname{alg}}(R,K)$ G-Noetherian topological space with Zariski topology. (*Converse not true!*)

Constructions

- *G*-stable subsets, and *G*-equivariant images, and finite unions of *G*-Noetherian spaces are *G*-Noetherian.
- If G acts on X and $Y \subseteq X$ is H-Noetherian for some subgroup $H \subseteq G$, then GY is G-Noetherian.

Set $GL_{\mathbb{N}} := \bigcup_{n \in \mathbb{N}} GL_n(K)$ and $M_{\mathbb{N}} := K^{\mathbb{N} \times \mathbb{N}}$. For any $N \in \mathbb{N}$, $M_{\mathbb{N}}^N$ is $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -Noetherian with the Zariski topology.

Set $GL_{\mathbb{N}} := \bigcup_{n \in \mathbb{N}} GL_n(K)$ and $M_{\mathbb{N}} := K^{\mathbb{N} \times \mathbb{N}}$. For any $N \in \mathbb{N}$, $M_{\mathbb{N}}^N$ is $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -Noetherian with the Zariski topology.

Key notion

 A_1, \ldots, A_N matrices of same sizes (perhaps infinite) $\rightsquigarrow \operatorname{rk}(A_1, \ldots, A_N) := \min \left\{ \operatorname{rk} \left(\sum c_i A_i \right) \mid (c_1 : \ldots : c_N) \in \mathbb{P}^{N-1} \right\}$

Set $GL_{\mathbb{N}} := \bigcup_{n \in \mathbb{N}} GL_n(K)$ and $M_{\mathbb{N}} := K^{\mathbb{N} \times \mathbb{N}}$. For any $N \in \mathbb{N}$, $M_{\mathbb{N}}^N$ is $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -Noetherian with the Zariski topology.

Key notion

 A_1, \ldots, A_N matrices of same sizes (perhaps infinite) $\rightsquigarrow \operatorname{rk}(A_1, \ldots, A_N) := \min \left\{ \operatorname{rk} \left(\sum c_i A_i \right) \mid (c_1 : \ldots : c_N) \in \mathbb{P}^{N-1} \right\}$

Proof idea

 $M_{\mathbb{N}}^{N} \supseteq X_{1} \supseteq X_{2} \supseteq \dots$ closed, $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -stable $\Longrightarrow either \sup_{A \in X_{n}} \operatorname{rk}(A) < \infty \text{ for } n \gg 0, \text{ or } = \infty \text{ for all } n$

Set $GL_{\mathbb{N}} := \bigcup_{n \in \mathbb{N}} GL_n(K)$ and $M_{\mathbb{N}} := K^{\mathbb{N} \times \mathbb{N}}$. For any $N \in \mathbb{N}$, $M_{\mathbb{N}}^N$ is $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -Noetherian with the Zariski topology.

Key notion

 A_1, \ldots, A_N matrices of same sizes (perhaps infinite) $\rightsquigarrow \operatorname{rk}(A_1, \ldots, A_N) := \min \left\{ \operatorname{rk} \left(\sum c_i A_i \right) \mid (c_1 : \ldots : c_N) \in \mathbb{P}^{N-1} \right\}$

Proof idea

 $M_{\mathbb{N}}^{N} \supseteq X_{1} \supseteq X_{2} \supseteq \dots$ closed, $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -stable $\Longrightarrow either \sup_{A \in X_{n}} \operatorname{rk}(A) < \infty \text{ for } n \gg 0, \text{ or } = \infty \text{ for all } n$

1st case: X_n lies in image of $M_N^{N-1} \times$ "small stuff", induction

Set $GL_{\mathbb{N}} := \bigcup_{n \in \mathbb{N}} GL_n(K)$ and $M_{\mathbb{N}} := K^{\mathbb{N} \times \mathbb{N}}$. For any $N \in \mathbb{N}$, $M_{\mathbb{N}}^N$ is $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -Noetherian with the Zariski topology.

Key notion

 A_1, \ldots, A_N matrices of same sizes (perhaps infinite)

$$\rightsquigarrow \operatorname{rk}(A_1,\ldots,A_N) := \min \left\{ \operatorname{rk}\left(\sum c_i A_i\right) \mid (c_1:\ldots:c_N) \in \mathbb{P}^{N-1} \right\}$$

Proof idea

 $M_{\mathbb{N}}^{N} \supseteq X_{1} \supseteq X_{2} \supseteq \dots$ closed, $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -stable $\leadsto either \sup_{A \in X_{n}} \operatorname{rk}(A) < \infty \text{ for } n \gg 0, \text{ or } = \infty \text{ for all } n$

1st case: X_n lies in image of $M_{\mathbb{N}}^{N-1} \times$ "small stuff", induction

2nd case: $X_n = M_N^N$ for all n

Rules $X_0, X_1, X_2, ...$ with $X_p : V \mapsto$ a variety in $\bigwedge^p V$ form a *Plücker variety* if

1.
$$\varphi: V \to W \leadsto \bigwedge^p \varphi \text{ maps } \mathbf{X}_p(V) \to \mathbf{X}_p(W)$$

2.
$$\bigwedge^p V \to \bigwedge^n(V^*)$$
 maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$

$$\{\mathbf{X}_p\}_p$$
 is bounded if $\exists V : \mathbf{X}_2(V) \neq \bigwedge^2 V$

Rules $X_0, X_1, X_2, ...$ with $X_p : V \mapsto$ a variety in $\bigwedge^p V$ form a *Plücker variety* if

1.
$$\varphi: V \to W \leadsto \bigwedge^p \varphi \text{ maps } \mathbf{X}_p(V) \to \mathbf{X}_p(W)$$

2.
$$\bigwedge^p V \to \bigwedge^n(V^*)$$
 maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$

$$\{\mathbf{X}_p\}_p$$
 is bounded if $\exists V : \mathbf{X}_2(V) \neq \bigwedge^2 V$

Main Theorem

Any bounded Plücker variety is defined set-theoretically in bounded degree, by finitely many equations *up to symmetry*.

(Not *scheme-theoretically*. Perhaps with Landsberg-Ottaviani's *skew flattenings*?)

Rules $X_0, X_1, X_2, ...$ with $X_p : V \mapsto$ a variety in $\bigwedge^p V$ form a *Plücker variety* if

1.
$$\varphi: V \to W \leadsto \bigwedge^p \varphi \text{ maps } \mathbf{X}_p(V) \to \mathbf{X}_p(W)$$

2.
$$\bigwedge^p V \to \bigwedge^n(V^*)$$
 maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$

$$\{\mathbf{X}_p\}_p$$
 is bounded if $\exists V : \mathbf{X}_2(V) \neq \bigwedge^2 V$

Main Theorem

Any bounded Plücker variety is defined set-theoretically in bounded degree, by finitely many equations *up to symmetry*.

(Not *scheme-theoretically*. Perhaps with Landsberg-Ottaviani's *skew flattenings*?)

Approach: organise all $\mathbf{X}_p(V)$ into one infinite-dimensional space.

The infinite wedge

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle_K$$

 $V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$

The infinite wedge

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle_K$$

$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

Diagram

The infinite wedge

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle_K$$

$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

Diagram

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle_K$$

$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

Diagram

Definition

$$\bigwedge^{\infty/2} V_{\infty} := \lim_{\to} \bigwedge^p V_{n,p}$$
 the infinite wedge (charge-0 part); basis $\{x_I := x_{i_1} \land x_{i_2} \land \cdots\}_I$, $I = \{i_1 < i_2 < \ldots\}$, $i_k = k$ for $k \gg 0$

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle_K$$

$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

Diagram

Definition

$$\bigwedge^{\infty/2} V_{\infty} := \lim_{\to} \bigwedge^p V_{n,p}$$
 the infinite wedge (charge-0 part); basis $\{x_I := x_{i_1} \land x_{i_2} \land \cdots\}_I$, $I = \{i_1 < i_2 < \ldots\}$, $i_k = k$ for $k \gg 0$

$$On \bigwedge^{\infty/2} V_{\infty} \ acts \ \mathrm{GL}_{\infty} := \bigcup_{n,p} \mathrm{GL}(V_{n,p}).$$

Young diagrams

Recall

$$\bigwedge^{\infty/2} V_{\infty}$$
 has basis $\{x_I := x_{i_1} \land x_{i_2} \land \cdots\}_I$, where $I = \{i_1 < i_2 < \ldots\} \subseteq (-\mathbb{N}) \cup (+\mathbb{N})$ with $i_k = k$ for $k \gg 0$

Recall

$$\bigwedge^{\infty/2} V_{\infty}$$
 has basis $\{x_I := x_{i_1} \land x_{i_2} \land \cdots\}_I$, where $I = \{i_1 < i_2 < \ldots\} \subseteq (-\mathbb{N}) \cup (+\mathbb{N})$ with $i_k = k$ for $k \gg 0$

Bijection with Young diagrams

 x_I with $I = \{-3, -2, 1, 2, 4, 6, 7, ...\}$ corresponds to

Recall

$$\bigwedge^{\infty/2} V_{\infty}$$
 has basis $\{x_I := x_{i_1} \land x_{i_2} \land \cdots\}_I$, where $I = \{i_1 < i_2 < \ldots\} \subseteq (-\mathbb{N}) \cup (+\mathbb{N})$ with $i_k = k$ for $k \gg 0$

Bijection with Young diagrams

 x_I with $I = \{-3, -2, 1, 2, 4, 6, 7, ...\}$ corresponds to

These x_I will be the *coordinates* of our ambient space, partially ordered by $I \le J$ if $i_k \ge j_k$ for all k (inclusion of Young diags). Unique minimum is $I = \{1, 2, ...\}$.

Dual diagram

Dual diagram

 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \leadsto varieties $X_{n,p}:=\mathbf{X}_p(V_{n,p}^*)$

Dual diagram

 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \leadsto varieties $X_{n,p}:=\mathbf{X}_p(V_{n,p}^*)$

Dual diagram

 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n,p}:=\mathbf{X}_p(V_{n,p}^*)$

 $\longrightarrow \mathbf{X}_{\infty} := \lim_{\leftarrow} X_{n,p} \text{ is } \mathrm{GL}_{\infty}\text{-stable subvariety of } (\bigwedge^{\infty/2} V_{\infty})^*$

Dual diagram

 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n,p}:=\mathbf{X}_p(V_{n,p}^*)$

 $\longrightarrow \mathbf{X}_{\infty} := \lim_{\leftarrow} X_{n,p} \text{ is } \mathrm{GL}_{\infty}\text{-stable subvariety of } (\bigwedge^{\infty/2} V_{\infty})^*$

Theorem (implies Main Theorem)

For bounded X, the limit X_{∞} is cut out by finitely many GL_{∞} -orbits of equations.

The limit $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ of $(\mathbf{Gr}_p)_p$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k-1$ for $k \gg 0$ and $j_k = k+1$ for $k \gg 0$.

The limit $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ of $(\mathbf{Gr}_p)_p$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k-1$ for $k \gg 0$ and $j_k = k+1$ for $k \gg 0$.

 \rightsquigarrow *not finitely many* GL_{∞} -*orbits*

The limit $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ of $(\mathbf{Gr}_p)_p$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k-1$ for $k \gg 0$ and $j_k = k+1$ for $k \gg 0$.

 \rightsquigarrow *not finitely many* GL_{∞} -*orbits*

But in fact the GL_{∞} -orbit of

$$(x_{-2,-1,3,...} \cdot x_{1,2,3,...}) - (x_{-2,1,3,...} \cdot x_{-1,2,3,...}) + (x_{-2,2,3,...} \cdot x_{-1,1,3,...})$$

defines \mathbf{Gr}_{∞} set-theoretically.

The limit $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ of $(\mathbf{Gr}_p)_p$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k-1$ for $k \gg 0$ and $j_k = k+1$ for $k \gg 0$.

 \rightsquigarrow *not finitely many* GL_{∞} -*orbits*

But in fact the GL_{∞} -orbit of

$$(x_{-2,-1,3,...} \cdot x_{1,2,3,...}) - (x_{-2,1,3,...} \cdot x_{-1,2,3,...}) + (x_{-2,2,3,...} \cdot x_{-1,1,3,...})$$

Our theorems imply that also higher secant varieties of Sato's Grassmannian are defined by finitely many GL_{∞} -orbits of equations... we just don't know which!

Polynomial time

Setting

X bounded Plücker variety $\rightsquigarrow \exists n_0, p_0$ such that GL_{∞} -orbits of equations of $X_{n_0,p_0} \subseteq \bigwedge^{p_0} V_{n_0,p_0}^*$ define $\mathbf{X}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$.

Setting

X bounded Plücker variety $\rightsquigarrow \exists n_0, p_0$ such that GL_{∞} -orbits of equations of $X_{n_0,p_0} \subseteq \bigwedge^{p_0} V_{n_0,p_0}^*$ define $\mathbf{X}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$.

Shape of randomised algorithm

Input: $p, V, T \in \bigwedge^p V$

Output: $T \in X_p(V)$?

Setting

X bounded Plücker variety $\rightsquigarrow \exists n_0, p_0$ such that GL_{∞} -orbits of equations of $X_{n_0,p_0} \subseteq \bigwedge^{p_0} V_{n_0,p_0}^*$ define $\mathbf{X}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$.

Shape of randomised algorithm

Input: $p, V, T \in \bigwedge^p V$

Output: $T \in X_p(V)$?

- 1. $n := \dim V p$
- 2. pick random linear iso $\varphi: V \to V_{n,p}^*$
- 3. set $T' := (\bigwedge^p \varphi)T$

Setting

X bounded Plücker variety $\rightsquigarrow \exists n_0, p_0$ such that GL_{∞} -orbits of equations of $X_{n_0,p_0} \subseteq \bigwedge^{p_0} V_{n_0,p_0}^*$ define $\mathbf{X}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$.

Shape of randomised algorithm

Input: $p, V, T \in \bigwedge^p V$

Output: $T \in X_p(V)$?

- 1. $n := \dim V p$
- 2. pick random linear iso $\varphi: V \to V_{n,p}^*$
- 3. set $T' := (\bigwedge^p \varphi)T$
- 4. set $T'' := \text{image of } T' \text{ in } V_{n_0,p_0}^*$
- 5. return $T'' \in X_{n_0,p_0}$?

A determinantal variety

```
Y^{k,l} := \{T \in (\bigwedge^{\infty/2} V_{\infty})^* \mid \forall g \in GL_{\infty} : \text{image of } gT \text{ in } \bigwedge^2 V_{2k,2}^* \text{ has rank } \leq 2k \text{ and image of } gT \text{ in } \bigwedge^{2l} V_{2,2l}^* \text{ has rank } \leq 2l \}.
\rightsquigarrow defined by orbits of two Pfaffians Pfaff_{2k,2}, Pfaff_{2,2l}
```

A determinantal variety

 $Y^{k,l} := \{T \in (\bigwedge^{\infty/2} V_{\infty})^* \mid \forall g \in GL_{\infty} : \text{image of } gT \text{ in } \bigwedge^2 V_{2k,2}^* \text{ has rank } \leq 2k \text{ and image of } gT \text{ in } \bigwedge^{2l} V_{2,2l}^* \text{ has rank } \leq 2l \}.$ \$\sim defined by orbits of two Pfaffians \text{Pfaff}_{2k,2}, \text{Pfaff}_{2l,2l}\$

Example with k = 2: $\bigwedge^2 V_{4,2}^*$ has coordinates $x_{ij} = x_i \wedge x_j$, $i, j \in \{-4, -3, -2, -1, 1, 2\} \leadsto$

$$Pfaff_{2k,2} = Pfaff \begin{bmatrix} 0 & x_{-4,-3} & x_{-4,-2} & x_{-4,-1} & x_{-4,+1} & x_{-4,+2} \\ -x_{-4,-3} & 0 & x_{-3,-2} & x_{-3,-1} & x_{-3,+1} & x_{-3,+2} \\ \vdots & \vdots & \ddots & 0 & x_{-2,-1} & x_{-2,+1} & x_{-2,+2} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & x_{+1,+2} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & x_{+1,+2} & \vdots & \vdots & \vdots \\ 0 & x_{-1,+1} & x_{-1,+2} & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & x_{-1,+1} & x_{-1,+2} & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & x_{-1,+1} & x_{-1,+2} & \vdots \\ 0 & x_{-1,+2} & \vdots & \vdots \\ 0 & x_{-1,+2} &$$

with k = 2:

 $Pfaff_{2k,2} = Pfaff$

0	$x_{-4,-3}$	$x_{-4,-2}$	$x_{-4,-1}$	$x_{-4,+1}$	$x_{-4,+2}$
$-x_{-4,-3}$	0	$x_{-3,-2}$	$x_{-3,-1}$	$x_{-3,+1}$	$x_{-3,+2}$
•	•		$x_{-2,-1}$	-, -	-,
•	•	•	0	$x_{-1,+1}$	$x_{-1,+2}$
•	•	•	•	0	$x_{+1,+2}$
•	•	•	•	•	0

with k = 2:

 $Pfaff_{2k,2} = Pfaff$

$$\begin{bmatrix} 0 & x_{-4,-3} & x_{-4,-2} & x_{-4,-1} & x_{-4,+1} & x_{-4,+2} \\ -x_{-4,-3} & 0 & x_{-3,-2} & x_{-3,-1} & x_{-3,+1} & x_{-3,+2} \\ \vdots & \vdots & \ddots & \ddots & 0 & x_{-1,+1} & x_{-1,+2} \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \end{bmatrix}$$

$$= x_{-4,-3} \cdot \mathbf{Pfaff}_{2(k-1),2}$$

 $= x_{-4,-3} \cdot \text{Pfaff}_{2(k-1),2} + terms \text{ with variables smaller than } x_{-4,-3}$

$$= x_{-4,-3} \cdot \mathbf{Pfaff}_{2(k-1),2}$$

 $= x_{-4,-3} \cdot |Pfaff_{2(k-1),2}| + terms with variables smaller than <math>x_{-4,-3}$

Young diagram
of
$$x_{-4,-3} = x_{-4,-3,3,4,...} \in \bigwedge^{\infty/2} V_{\infty}$$
:

$$= x_{-4,-3} \cdot Pfaff_{2(k-1),2}$$

 $= x_{-4,-3} \cdot \text{Pfaff}_{2(k-1),2} + terms \text{ with variables smaller than } x_{-4,-3}$

Young diagram of
$$x_{-4,-3} = x_{-4,-3,3,4,...} \in \bigwedge^{\infty/2} V_{\infty}$$
:

Pfaffian on $\wedge^{2l} V_{2,2l}^*$ has largest variable

Theorem

 $Y^{k,l}$ is a GL_{∞} -Noetherian topological space.

(This implies the Main Theorem, since the limit of any bounded Plücker variety lies in some $Y^{k,l}$.)

Theorem

 $Y^{k,l}$ is a GL_{∞} -Noetherian topological space.

(This implies the Main Theorem, since the limit of any bounded Plücker variety lies in some $Y^{k,l}$.)

Proof

• Induction on (k, l): $Y^{k,l} = Y^{k-1,l} \cup Y^{k,l-1} \cup GL_{\infty}Z$ where $Z = \{T \in Y^{k,l} \mid \text{Pfaff}_{2(k-1),2}(T) \cdot \text{Pfaff}_{2,2(l-1)}(T) \neq 0\}$

Theorem

 $Y^{k,l}$ is a GL_{∞} -Noetherian topological space.

(This implies the Main Theorem, since the limit of any bounded Plücker variety lies in some $Y^{k,l}$.)

Proof

- Induction on (k, l): $Y^{k,l} = Y^{k-1,l} \cup Y^{k,l-1} \cup GL_{\infty}Z$ where $Z = \{T \in Y^{k,l} \mid \text{Pfaff}_{2(k-1),2}(T) \cdot \text{Pfaff}_{2,2(l-1)}(T) \neq 0\}$
- Z is stable under

$$GL(\langle \dots, x_{-2k-2}, x_{-2k-1} \rangle) \times GL(\langle x_{2l+1}, x_{2l+2}, \dots \rangle) =: GL_{\mathbb{N}} \times GL_{\mathbb{N}}$$

Theorem

 $Y^{k,l}$ is a GL_{∞} -Noetherian topological space.

(This implies the Main Theorem, since the limit of any bounded Plücker variety lies in some $Y^{k,l}$.)

Proof

- Induction on (k, l): $Y^{k,l} = Y^{k-1,l} \cup Y^{k,l-1} \cup GL_{\infty}Z$ where $Z = \{T \in Y^{k,l} \mid \text{Pfaff}_{2(k-1),2}(T) \cdot \text{Pfaff}_{2,2(l-1)}(T) \neq 0\}$
- Z is stable under

$$GL(\langle \dots, x_{-2k-2}, x_{-2k-1} \rangle) \times GL(\langle x_{2l+1}, x_{2l+2}, \dots \rangle) =: GL_{\mathbb{N}} \times GL_{\mathbb{N}}$$

• It suffices to prove that Z is $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -Noetherian.

Theorem

 $Y^{k,l}$ is a GL_{∞} -Noetherian topological space.

(This implies the Main Theorem, since the limit of any bounded Plücker variety lies in some $Y^{k,l}$.)

Proof

- Induction on (k, l): $Y^{k,l} = Y^{k-1,l} \cup Y^{k,l-1} \cup GL_{\infty}Z$ where $Z = \{T \in Y^{k,l} \mid \text{Pfaff}_{2(k-1),2}(T) \cdot \text{Pfaff}_{2,2(l-1)}(T) \neq 0\}$
- Z is stable under

$$GL(\langle \dots, x_{-2k-2}, x_{-2k-1} \rangle) \times GL(\langle x_{2l+1}, x_{2l+2}, \dots \rangle) =: GL_{\mathbb{N}} \times GL_{\mathbb{N}}$$

- It suffices to prove that Z is $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -Noetherian.
- On Z, all variables \geq \square or \geq \square can be expressed in smaller ones.

• This leaves variables such as

• This leaves variables such as

• and hence a $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -embedding of Z into a space of N-tuples of $\mathbb{N} \times \mathbb{N}$ -matrices, with i, j as indices.

This leaves variables such as

- and hence a $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -embedding of Z into a space of N-tuples of $\mathbb{N} \times \mathbb{N}$ -matrices, with i, j as indices.
- That space is $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -Noetherian, hence so is Z!

This leaves variables such as

- and hence a $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -embedding of Z into a space of N-tuples of $\mathbb{N} \times \mathbb{N}$ -matrices, with i, j as indices.
- That space is $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -Noetherian, hence so is Z!

Thank you!