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V a fin-dim vector space over an infinite field K
> Gry(V) i={viA---Av, | v, e VIC APV
cone over Grassmannian

(rank-one alternating tensors)

Two properties:

1.if ¢ : V — W linear
W APt APV - \PW
maps Gr,(V) — Gr,(W)

2.1 dmV =n+pwithn,p >0
~» natural map A’V — (A" V)" - A"(V")
maps Gr,(V) — Gr, (V")
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Definition
Rules Xy, X1, X,, ... with

X, : {vector spaces V} — {varieties in A\” V}

form a Pliicker variety if, fordimV = n + p,
l.o: V> W~ AP @ maps X,(V) — X,(W)
2. APV = A"(V*) maps X,,(V) = X,,(V")

Constructions

X, Y Pliicker varieties ~» so are
X + Y (join), X (tangential),
XUuY,XNnY

skew analogue of Snowden’s A-varieties
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Definition
A Pliicker variety {X,}, 1S bounded
if Xo(V) # A* V for dim V sufficiently large.

Main Theorem

Any bounded Pliicker variety 1s defined
set-theoretically in bounded degree, by
finitely many equations up fo symmetry.

Theorem
For any fixed bounded Pliicker variety there
exists a polynomial-time membership test.

Theorems apply, in particular, to
kGr = {alternating tensors of alternating rank < k}
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Definition
A ring R with a group G acting on it 1s G-Noetherian it every
G-stable 1deal of R 1s generated by finitely many G-orbits.

Theorem (Cohen 1987, Hillar-Sullivant 2009)
R=Kl[x;;|i=1,...,k; j€ N]Jis G-Noetherian
for G = Sym(N) with TXij = Xin(j)-

Lots of applications: algebraic statistics,
multilinear algebra, ... but not needed today.




Topological Noetherianity up to symmetry 6

Definition

A topological space X with a group G acting on it 1s
G-Noetherian 1f every chain X 2 X; 2 X, 2 ... of G-stable closed
subsets stabilises.



Topological Noetherianity up to symmetry 6

Definition

A topological space X with a group G acting on it 1s
G-Noetherian 1f every chain X 2 X; 2 X, 2 ... of G-stable closed
subsets stabilises.

Remark

If R 1s a G-Noetherian K-algebra, then Homg_4,(R, K)
G-Noetherian topological space with Zariski topology.
(Converse not true!)



Topological Noetherianity up to symmetry 6

Definition

A topological space X with a group G acting on it 1s
G-Noetherian 1f every chain X 2 X; 2 X, 2 ... of G-stable closed
subsets stabilises.

Remark

If R 1s a G-Noetherian K-algebra, then Homg_4,(R, K)
G-Noetherian topological space with Zariski topology.
(Converse not true!)

Constructions
e (5-stable subsets, and G-equivariant images, and finite unions of
G-Noetherian spaces are G-Noetherian.

e If G acts on X and Y C X is H-Noetherian for some subgroup
H C G, then GY 1s G-Noetherian.
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Tuples of infinite-by-infinite matrices

Theorem
Set GLy := J,,enn GL,,(K) and My := KN For any N € N, Mg
1s GLy X GLy-Noetherian with the Zariski topology.

Key notion

Aq,...,Ay matrices of same sizes (perhaps infinite)

w tk(Ap,..., Ay) = min {rk (¥ c;A) | (c1 ...t cy) € PN
Proof idea

MY 2 X; 2 X, 2 ... closed, GLy X GLy-stable
~ either sup, .y TK(A) < oo for n > 0, or = oo for all n

Ist case: X, lies in image of My, ' x “small stuff”, induction

2nd case: X, = My} for all n
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Back to Pliicker varieties g

Definition

Rules X, X;, Xy, ... with X, : V - a variety in A? V
form a Pliicker variety it

l.o: V> W~ AP pmaps X,(V) = X, (W)

2. APV = A"(V*) maps X, (V) = X,,(V¥)

(X}, is bounded if AV : Xp(V) # \* V

Main Theorem
Any bounded Pliicker variety 1s defined set-theoretically in

bounded degree, by finitely many equations up to symmetry.

(Not scheme-theoretically. Perhaps with
Landsberg-Ottaviani’s skew flattenings?)

Approach: organise all X ,(V) into one
infinite-dimensional space.
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The infinite wedge 0

Vo 1= (oo X3, X0, X1, X1, X2, X3, .. K

Vip = Xcps oo s X215 X155 Xp) € Vo

Diagram

AVoo —» A'Vor o ANV = | A2 Vip —o AP Vi
Cr RIS

A'Vio o A'Vii o A°Vio —a | AP Virip

l l l

Definition
A®? V= lim_, AP V,..p the infinite wedge (charge-0 part);
basis {x; :==x;, Axp, A}, I={i1<ip<...),ig=ktfork>0

On \™"* Vo acts GLo := U, , GL(V,, ).
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Recall
/\00/2 Vs has basis {x; := Xip N\ Xj, N\ - -}7, where
I[={ii<ih<..})C(-N)U+N)with iy = kfork> 0

Bijection with Young diagrams
xywithl ={-3,-2,1,2,4,6,7, ...} corresponds to

.’, /*/,’ 7’ ,, ,',/ ’ ,/ /,,, /,/,
[ /* /f 7’ 7’ 7’ /,
1 234567
These x; will be the coordinates of our ambient space, partially

ordered by I < J 1t iy > ji for all £ (inclusion of Young diags).
Unique minimum s [ = {1,2,...}.
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The limit of a Pliicker variety

Dual diagram

/\O VSO < /\1 Vgl <+ /\p V:;p <+ /\p+1 V;:,p+1
T | T

/\O Viko - /\1 Vikl - /\p V:H,p
T T

{Xp}p>0 a Pliicker variety ~» varieties X, , := X, (V)
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The limit of a Pliicker variety

Dual diagram

A Viy o AV < Np«N“w
I I % %
AVip — A'Vi — N Vi T”p - Sl
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{Xp}p>0 a Pliicker variety ~» varieties X, , := X, (V)
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The limit of a Pliicker variety

Dual diagram

AOVE o AV /\” o — ANV
T T Py, N,
AVip — A'Vi — N Vi T’”’ - Sl
T T N
n+l,p

{Xp}p>0 a Pliicker variety ~» varieties X, , := X, (V)
w X 1= limc X, , 1s GL-stable subvariety of ( /\°°/ 2 V)

Theorem (implies Main Theorem)
For bounded X, the limit X, 1s cut out by finitely many
GL-orbits of equations.
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Sato’s Grassmannian 12

Example

The Iimit Gr,, C ( /\OO/ 2 V)" of (Gr),), 18 Sato’s Grassmannian
defined by polynomials ) ;c; +x;; - xj.; = 0

where iy =k —1fork> 0Oand j, = k+ 1 fork > 0.

~» not finitely many GL,-orbits

But in fact the GL_, -orbit of
(Xx_0-13... " X123..)—(x_213.. " X_123..) + (X_223... - X-1.13...)

defines Gr., set-theoretically.

Our theorems 1mply that also higher secant varieties of Sato’s
Grassmannian are defined by finitely many GL,-orbits of
equations. . . we just don’t know which/!
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equations of X, ,, € A* V. define X, C (AZ? Vo).
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Setting
X bounded Pliicker variety ~» 1 ng, po such that GL,-orbits of
equations of X, ,, € A* V. define X, C (AZ? Vo).

Shape of randomised algorithm Po P

Input: p,V,T € APV

Output: 7" € X,(V)? 1y

l.n:=dmV -p

2. pick random linearisop : V. — V| n T’

3.setT’ := (AP ©)T




Polynomial time

Setting
X bounded Pliicker variety ~» 1 ng, po such that GL,-orbits of
equations of X, ,, € A* V. define X, C (AZ? Vo).

Shape of randomised algorithm Po P
Input: p,V,T € APV
Output: 7" € X,(V)? g T’

l.n:=dmV -p

2. pick random linearisop : V. — V| n T’

3.setT’ := (AP ©)T

4.setT” :=1mageof 7" in V,
5. return 7" € X, p,?



Pfathians

A determinantal variety

Yol :={T € (N""* V)* | Vg € GL :
image of g7 in A* Vi, has rank < 2k and
image of g7 in \* V, ,; has rank <21},

~» defined by orbits of two Pfaffians Ptafi,y », Ptatt, o
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A determinantal variety

Yol :={T € (N""* V)* | Vg € GL :
image of g7 in A* Vi, has rank < 2k and
image of g7 in \* V> ,, has rank < 2[}.

~» defined by orbits of two ,Pfaﬁians Pfaft,; o, Pfafl,

Example with k = 2: A\* V,, has coordinates x;; = x; A x;,
i,je{-4,-3,-2,-1,1,2} »»

Pfaﬁzk,z = Pfaft

0 X—4,-3 X4-2 X4-1 X441
—X_4,-3 0 X322 X3-1 X341
0 X-2-1 X-2+1
0 X-1,+1

0

X_442 |
X_3 42
X_2 +2
X_1,+2
X+1,42

0




Ptathans, continued

Example
with k = 2:

Pfaﬂzk,z = Pfaft

X—4,+1
X-3,+1
X-2,+1
X-1,+1

X_442 |
X_3 42
X_2.+2
X—1,+2
X+1,42
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Example 0 X_43 X_4-2 X_a_1 X441 X442 |
with k = 2: —X_4,-3 0) X392 X3_1 X341 X342
Pfaff,, , = Pfaff | | O Xor Xour X2m
’ ‘ ' ' 0 X141  X-142
0 X+1,42
0]

= x_4_3 |Ptattog—1)2 | + terms with variables smaller than x_4 _3




Ptathans, continued

Example 0 X_43 X_4-2 X_a_1 X441 X442 |
with k = 2: —X_4,-3 0 X3-2 X3_1 X341 X342

: : 0) X_o_1 X_ X_
Pfaﬂ:zk,2 — Pfaff 2,—1 2,+1 2,42

' ' ' 0 X-1,+41 X-1,42

0 X+1,42
0
= x_4_3 |Ptattog—1)2 | + terms with variables smaller than x_4 _3
A

Young diagram o

21 .
of x_4-3 = x_4-334,.. € A% Vo




Ptathans, continued

Example 0 X_43 X_4-2 X_a_1 X441 X442 |
with k = 2: —X_4,-3 0 X3-2 X3_1 X341 X342
: : 0) X_o_1 X_ X_
Pfaﬂzk,z = Pfaft 2,1 2,+1 2,42
' . . 0 X_1,41  X-142
0 X+1,42
0)
= x_4_3 |Ptattog—1)2 | + terms with variables smaller than x_4 _3
A
Young diagram o
of x_4-3 = x_4-334,.. € A% Vo
21
v -

Pfaffian on A% V3 ,, has largest variable




Theorem
Y*! is a GL-Noetherian topological space.

(This implies the Main Theorem, since the limit of any bounded
Pliicker variety lies in some Y*'.)
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Theorem
Y*! is a GL-Noetherian topological space.

(This implies the Main Theorem, since the limit of any bounded
Pliicker variety lies in some Y*'.)

Proof
e Induction on (k, [);: Y*! = YLy y&=1 U GL.Z where
Z ={T € Yk | Paftrk—1)2(T) - Patl, 2;-1)(T) # 0}

e / 1s stable under
GL((. .., Xx_2k—2, X—2k-1)) X GL({X2111, X2142, . . .)) =: GLyy X GLy

e It suffices to prove that Z 1s GLy X GLy-Noetherian.

e On Z, all variables > or > can be expressed 1n
smaller ones.




Proof climax
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Proof climax

e This leaves variables such as

J
e and hence a GLy X GLy-embedding of Z into a space of
N-tuples of N X N-matrices, with iz, j as indices.

e That space 1s GLy X GLy-Noetherian, hence so 1s Z!

Thank you!
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