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V a fin-dim vector space over an infinite field K
 Grp(V) := {v1 ∧ · · · ∧ vp | vi ∈ V} ⊆

∧p V
cone over Grassmannian
(rank-one alternating tensors)

Two properties:
1. if ϕ : V → W linear
 
∧p ϕ :

∧p V →
∧p W

maps Grp(V)→ Grp(W)

2. if dim V =: n + p with n, p ≥ 0
 natural map

∧p V → (
∧n V)∗ →

∧n(V∗)
maps Grp(V)→ Grn(V∗)
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Definition
Rules X0,X1,X2, . . . with

Xp : {vector spaces V} → {varieties in
∧p V}

Constructions
X,Y Plücker varieties so are
X + Y (join), τX (tangential),
X ∪ Y,X ∩ Y
skew analogue of Snowden’s ∆-varieties

form a Plücker variety if, for dim V = n + p,
1. ϕ : V → W 

∧p ϕ maps Xp(V)→ Xp(W)
2.
∧p V →

∧n(V∗) maps Xp(V)→ Xn(V∗)
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Definition
A Plücker variety {Xp}p is bounded
if X2(V) ,

∧2 V for dim V sufficiently large.

Main Theorem
Any bounded Plücker variety is defined
set-theoretically in bounded degree, by
finitely many equations up to symmetry.

Theorem
For any fixed bounded Plücker variety there
exists a polynomial-time membership test.

Theorems apply, in particular, to
kGr = {alternating tensors of alternating rank ≤ k}
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Definition
A ring R with a group G acting on it is G-Noetherian if every
G-stable ideal of R is generated by finitely many G-orbits.

Theorem (Cohen 1987, Hillar-Sullivant 2009)
R = K[xi j | i = 1, . . . , k; j ∈ N] is G-Noetherian
for G = Sym(N) with πxi j = xiπ( j).

Lots of applications: algebraic statistics,
multilinear algebra, . . . but not needed today.
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Definition
A topological space X with a group G acting on it is
G-Noetherian if every chain X ⊇ X1 ⊇ X2 ⊇ . . . of G-stable closed
subsets stabilises.

Remark
If R is a G-Noetherian K-algebra, then HomK−alg(R,K)
G-Noetherian topological space with Zariski topology.
(Converse not true!)

Constructions
• G-stable subsets, and G-equivariant images, and finite unions of
G-Noetherian spaces are G-Noetherian.
• If G acts on X and Y ⊆ X is H-Noetherian for some subgroup
H ⊆ G, then GY is G-Noetherian.
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Set GLN :=

⋃
n∈N GLn(K) and MN := KN×N. For any N ∈ N, MN

N

is GLN × GLN-Noetherian with the Zariski topology.

Key notion
A1, . . . , AN matrices of same sizes (perhaps infinite)
 rk(A1, . . . , AN) := min

{
rk (
∑

ciAi) | (c1 : . . . : cN) ∈ PN−1
}

Proof idea
MN
N ⊇ X1 ⊇ X2 ⊇ . . . closed, GLN × GLN-stable
 either supA∈Xn

rk(A) < ∞ for n � 0, or = ∞ for all n

1st case: Xn lies in image of MN−1
N × “small stuff”, induction

2nd case: Xn = MN
N for all n �
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Definition
Rules X0,X1,X2, . . . with Xp : V 7→ a variety in

∧p V
form a Plücker variety if
1. ϕ : V → W 

∧p ϕ maps Xp(V)→ Xp(W)
2.
∧p V →

∧n(V∗) maps Xp(V)→ Xn(V∗)
{Xp}p is bounded if ∃V : X2(V) ,

∧2 V

Main Theorem
Any bounded Plücker variety is defined set-theoretically in
bounded degree, by finitely many equations up to symmetry.

Approach: organise all Xp(V) into one
infinite-dimensional space.

(Not scheme-theoretically. Perhaps with
Landsberg-Ottaviani’s skew flattenings?)
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Definition∧∞/2 V∞ := lim→
∧p Vn,p the infinite wedge (charge-0 part);

basis {xI := xi1 ∧ xi2 ∧ · · ·}I , I = {i1 < i2 < . . .}, ik = k for k � 0

On
∧∞/2 V∞ acts GL∞ :=

⋃
n,p GL(Vn,p).
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10Young diagrams

Recall∧∞/2 V∞ has basis {xI := xi1 ∧ xi2 ∧ · · ·}I , where
I = {i1 < i2 < . . .} ⊆ (−N) ∪ (+N) with ik = k for k � 0

Bijection with Young diagrams
xI with I = {−3,−2, 1, 2, 4, 6, 7, . . .} corresponds to

−1
−2
−3
−4

1 2 3 4 5 6 7
These xI will be the coordinates of our ambient space, partially
ordered by I ≤ J if ik ≥ jk for all k (inclusion of Young diags).
Unique minimum is I = {1, 2, . . .}.
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{Xp}p≥0 a Plücker variety varieties Xn,p := Xp(V∗n,p)

Dual diagram∧0 V∗00
∧1 V∗01∧0 V∗10
∧1 V∗11

∧p V∗np

∧p V∗n+1,p

∧p+1 V∗n,p+1



11The limit of a Plücker variety
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11The limit of a Plücker variety

{Xp}p≥0 a Plücker variety varieties Xn,p := Xp(V∗n,p)

Dual diagram∧0 V∗00
∧1 V∗01∧0 V∗10
∧1 V∗11

∧p V∗np

∧p V∗n+1,p

∧p+1 V∗n,p+1

Xn,p Xn,p+1

Xn+1,p

Theorem (implies Main Theorem)
For bounded X, the limit X∞ is cut out by finitely many
GL∞-orbits of equations.

 X∞ := lim← Xn,p is GL∞-stable subvariety of (
∧∞/2 V∞)∗
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Example
The limit Gr∞ ⊆ (

∧∞/2 V∞)∗ of (Grp)p is Sato’s Grassmannian
defined by polynomials

∑
i∈I ±xI−i · xJ+i = 0

where ik = k − 1 for k � 0 and jk = k + 1 for k � 0.

 not finitely many GL∞-orbits

But in fact the GL∞-orbit of
(x−2,−1,3,... · x1,2,3,...) − (x−2,1,3,... · x−1,2,3,...) + (x−2,2,3,... · x−1,1,3,...)

defines Gr∞ set-theoretically.

Our theorems imply that also higher secant varieties of Sato’s
Grassmannian are defined by finitely many GL∞-orbits of
equations. . . we just don’t know which!
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13Polynomial time

Setting
X bounded Plücker variety ∃ n0, p0 such that GL∞-orbits of
equations of Xn0,p0 ⊆

∧p0 V∗n0,p0
define X∞ ⊆ (

∧∞/2 V∞)∗.

Shape of randomised algorithm
Input: p,V,T ∈

∧p V
Output: T ∈ Xp(V)?

1. n := dim V − p
2. pick random linear iso ϕ : V → V∗n,p
3. set T ′ := (

∧p ϕ)T
4. set T ′′ := image of T ′ in V∗n0,p0

5. return T ′′ ∈ Xn0,p0 ?

n0

p0

n

p

T ′

T ′′
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A determinantal variety
Yk,l := {T ∈ (

∧∞/2 V∞)∗ | ∀g ∈ GL∞ :
image of gT in

∧2 V∗2k,2 has rank ≤ 2k and
image of gT in

∧2l V∗2,2l has rank ≤ 2l}.
 defined by orbits of two Pfaffians Pfaff2k,2,Pfaff2,2l

Example with k = 2:
∧2 V∗4,2 has coordinates xi j = xi ∧ x j,

i, j ∈ {−4,−3,−2,−1, 1, 2} 

0 x−4,−3 x−4,−2 x−4,−1 x−4,+1 x−4,+2

−x−4,−3 0 x−3,−2 x−3,−1 x−3,+1 x−3,+2

· · 0 x−2,−1 x−2,+1 x−2,+2

· · · 0 x−1,+1 x−1,+2

· · · · 0 x+1,+2

· · · · · 0


Pfaff2k,2 = Pfaff
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
= x−4,−3 · Pfaff2(k−1),2 + terms with variables smaller than x−4,−3

Young diagram
of x−4,−3 = x−4,−3,3,4,... ∈

∧∞/2 V∞: 2k

Pfaff2k,2 = Pfaff

Example
with k = 2:
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

0 x−4,−3 x−4,−2 x−4,−1 x−4,+1 x−4,+2

−x−4,−3 0 x−3,−2 x−3,−1 x−3,+1 x−3,+2

· · 0 x−2,−1 x−2,+1 x−2,+2

· · · 0 x−1,+1 x−1,+2

· · · · 0 x+1,+2

· · · · · 0


= x−4,−3 · Pfaff2(k−1),2 + terms with variables smaller than x−4,−3

Young diagram
of x−4,−3 = x−4,−3,3,4,... ∈

∧∞/2 V∞: 2k

Pfaffian on
∧2l V∗2,2l has largest variable

2l

Pfaff2k,2 = Pfaff

Example
with k = 2:
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Theorem
Yk,l is a GL∞-Noetherian topological space.

Proof
• Induction on (k, l): Yk,l = Yk−1,l ∪ Yk,l−1 ∪ GL∞Z where
Z = {T ∈ Yk,l | Pfaff2(k−1),2(T ) · Pfaff2,2(l−1)(T ) , 0}

(This implies the Main Theorem, since the limit of any bounded
Plücker variety lies in some Yk,l.)

• Z is stable under
GL(〈. . . , x−2k−2, x−2k−1〉) × GL(〈x2l+1, x2l+2, . . .〉) =: GLN × GLN

• On Z, all variables ≥ or ≥ can be expressed in
smaller ones.

• It suffices to prove that Z is GLN × GLN-Noetherian.
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• This leaves variables such as

2l

2k

j

i

• and hence a GLN × GLN-embedding of Z into a space of
N-tuples of N × N-matrices, with i, j as indices.

• That space is GLN × GLN-Noetherian, hence so is Z! �

Thank you!
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