

Bounded-rank tensors and group-based models

Jan Draisma j.draisma@tue.nl

27 September 2011

Tropical Geometry and Computational Biology Saarbrücken

Bounded-rank tensors and group-based models

Jan Draisma j.draisma@tue.nl

27 September 2011

Tropical Geometry and Computational Biology Saarbrücken

Tree models

$$\begin{aligned} & \operatorname{Prob}(i,j,k,l) = \\ & \sum_{m,q,r} \pi_m M_{qm} P_{iq} Q_{jq} N_{rm} R_{kr} S_{lr} \end{aligned}$$

Prob $\in \mathbb{R}^{\{A,C,G,T\}^p} = \mathbb{R}^{4 \times \cdots \times 4}$ p number of leaves

$$Model = \{ Prob \mid \pi, M, \dots, S \}$$

Products of star models

$$\begin{aligned} &\operatorname{Prob}(i,j,k,l) = \sum_{m} \\ &(\sum_{q} \widetilde{M}_{qm} P_{iq} Q_{jq}) (\sum_{r} N_{rm} R_{kr} S_{lr}) = \\ &\sum_{m} \operatorname{Prob}_{1}(i,j,m) \operatorname{Prob}_{2}(m,k,l) \end{aligned}$$

 $Prob = Prob_1 \cdot Prob_2$ $Model = Model_1 \cdot Model_2$

Model₁, Model₂ $\subseteq \mathbb{R}^{\{A,C,G,T\}^3}$ Model $\subseteq \mathbb{R}^{\{A,C,G,T\}^p}$, p=4

Tree models

$$\begin{aligned} & \operatorname{Prob}(i,j,k,l) = \\ & \sum_{m,q,r} \pi_m M_{qm} P_{iq} Q_{jq} N_{rm} R_{kr} S_{lr} \end{aligned}$$

Prob $\in \mathbb{R}^{\{A,C,G,T\}^p} = \mathbb{R}^{4 \times \cdots \times 4}$ p number of leaves

 $Model = \{ Prob \mid \pi, M, \dots, S \}$

Products of star models

$$\begin{aligned} &\operatorname{Prob}(i,j,k,l) = \sum_{m} \\ &(\sum_{q} \widetilde{M}_{qm} P_{iq} Q_{jq}) (\sum_{r} N_{rm} R_{kr} S_{lr}) = \\ &\sum_{m} \operatorname{Prob}_{1}(i,j,m) \operatorname{Prob}_{2}(m,k,l) \end{aligned}$$

 $Prob = Prob_1 \cdot Prob_2$ $Model = Model_1 \cdot Model_2$

 $Model_1, Model_2 \subseteq \mathbb{R}^{\{A,C,G,T\}^3}$ $Model \subseteq \mathbb{R}^{\{A,C,G,T\}^p}, \ p = 4$

Phylogenetic invariants

Does the tree fit the data?

- 1. ML-estimation
- 2. **equations** for Model polynomial ideal in 4^p variables

Many contributors: Allman, Casanellas, Pachter, Rhodes, Sturmfels, Sullivant,

Allman-Rhodes, D-Kuttler: Description of ideal I(Model)from $I(Model_1)$, $I(Model_2)$.

Equations for stars?

Stars and bounded rank

$$\text{Prob}(i_1, \dots, i_p) = \\
 \sum_{j=1}^k M_{i_1, j}^{(1)} \cdots M_{i_p, j}^{(p)}$$

$$v_j^{(q)} := M_{?,j}^{(q)} \in \mathbb{R}^n$$
 $\operatorname{Prob} = \sum_{j=1}^k v_j^{(1)} \otimes \cdots \otimes v_j^{(p)}$

Model = $\{\text{tensors of rank} \le k\}$ rank vs. border rank

Phylogenetic invariants

Does the tree fit the data?

- I. ML-estimation
- 2. **equations** for Model polynomial ideal in 4^p variables

Many contributors: Allman, Casanellas, Pachter, Rhodes, Sturmfels, Sullivant,

Allman-Rhodes, D-Kuttler: Description of ideal I(Model)from $I(Model_1)$, $I(Model_2)$.

Equations for stars?

Stars and bounded rank

$$\text{Prob}(i_1, \dots, i_p) = \\
 \sum_{j=1}^k M_{i_1,j}^{(1)} \cdots M_{i_p,j}^{(p)}$$

$$v_j^{(q)} := M_{?,j}^{(q)} \in \mathbb{R}^n$$
 $\operatorname{Prob} = \sum_{j=1}^k v_j^{(1)} \otimes \cdots \otimes v_j^{(p)}$

Model = $\{\text{tensors of rank} \le k\}$ rank vs. border rank

Equations for bounded rank

Classical

Ideal of $\{n \times n \times \cdots \times n\text{-tensors}$ of rank $\leq 1\}$ is generated by $2 \times 2\text{-determinants}$.

Raicu, Landsberg-Manivel

Ideal of $\{n \times n \times \cdots \times n\text{-tensors}$ of rank $\leq 2\}$ is generated by 3×3 -determinants (GSS conjecture).

Strassen

Ideal of $\{3 \times 3 \times 3\text{-tensors of rank} \le 4\}$ is generated by one polynomial of degree 9.

Friedland, Bates-Oeding

Equations for $4 \times 4 \times 4$ -tensors of border rank < 4.

Strassen's equation

maps rank 1 to rank 2 hence rank ≤ 4 to rank ≤ 8 take determinant!

Ottaviani-Landsberg geometric interpretation of Strassen-type equations

Equations for bounded rank

Classical

Ideal of $\{n \times n \times \cdots \times n\text{-tensors}$ of rank $\leq 1\}$ is generated by $2 \times 2\text{-determinants}$.

Raicu, Landsberg-Manivel

Ideal of $\{n \times n \times \cdots \times n \text{-tensors} \}$ of rank $\leq 2\}$ is generated by $3 \times 3 \text{-determinants}$ (GSS conjecture).

Strassen

Ideal of $\{3 \times 3 \times 3\text{-tensors of rank} \le 4\}$ is generated by one polynomial of degree 9.

Friedland, Bates-Oeding

Equations for $4 \times 4 \times 4$ -tensors of border rank < 4.

Strassen's equation

maps rank 1 to rank 2 hence rank ≤ 4 to rank ≤ 8 take determinant!

Ottaviani-Landsberg geometric interpretation of Strassen-type equations

Uniform degree bounds

Theorem (D-Kuttler)

For fixed k there exists a d s.t. $\forall p, n_1, \ldots, n_p$ the $n_1 \times \cdots \times n_p$ -tensors of border rank $\leq k$ are defined by polynomials of degree $\leq d$.

d explicitly known only for k = 1, 2

Corollary

For fixed k there exists a polynomial-time probability-one algorithm for testing border rank < k.

Conjecture

Same statement for generators of the ideal.

Infinite-dimensional tensors

$$V = \mathbb{R}^n$$
 $x_0, \dots, x_{n-1} \in V^* \text{ coordinates}$
 $V^{\otimes 1} \stackrel{I \otimes x_0}{\longleftarrow} V^{\otimes 2} \stackrel{I \otimes I \otimes x_0}{\longleftarrow} V^{\otimes 3} \stackrel{\cdots}{\longleftarrow} \cdots$
 $V^{\otimes \infty} := \lim_{\longleftarrow} V^{\otimes p}$

coordinates $x_{i_1} \otimes x_{i_2} \otimes \dots$ only finitely many i_j non-zero

 $Y^{\infty}\subseteq V^{\otimes\infty}$ defined by vanishing of $(k+1)\times(k+1)$ -determinants

Theorem

 Y^{∞} is Noetherian up to natural symmetries of $V^{\otimes \infty}$.

Very non-constructive??

Uniform degree bounds

Theorem (D-Kuttler)

For fixed k there exists a d s.t. $\forall p, n_1, \ldots, n_p$ the $n_1 \times \cdots \times n_p$ -tensors of border rank $\leq k$ are defined by polynomials of degree $\leq d$.

d explicitly known only for k = 1, 2

Corollary

For fixed k there exists a polynomial-time probability-one algorithm for testing border rank $\leq k$.

Conjecture

Same statement for generators of the ideal.

Infinite-dimensional tensors

$$V = \mathbb{R}^n$$
 $x_0, \dots, x_{n-1} \in V^* \text{ coordinates}$
 $V^{\otimes 1} \stackrel{I \otimes x_0}{\longleftarrow} V^{\otimes 2} \stackrel{I \otimes I \otimes x_0}{\longleftarrow} V^{\otimes 3} \stackrel{\cdots}{\longleftarrow} \cdots$
 $V^{\otimes \infty} := \lim_{\longleftarrow} V^{\otimes p}$

coordinates $x_{i_1} \otimes x_{i_2} \otimes \dots$ only finitely many i_i non-zero

 $Y^{\infty} \subset V^{\otimes \infty}$ defined by vanishing of $(k+1)\times(k+1)$ -determinants

Theorem

 Y^{∞} is Noetherian up to natural symmetries of $V^{\otimes \infty}$.

Very non-constructive??

Group-based models

$$\sum_{j} M_{i_1,j}^{(1)} \cdots M_{i_p,j}^{(p)}$$

now $i_1, \ldots, i_n, j \in G$ group impose $M_{i,i}^{(q)} = m_{i-i}^{(q)}$

Sturmfels-Sullivant

Fourier transform:

$$\widehat{\text{Prob}}(i_1,\ldots,i_p) = \widehat{m}_{i_1}^{(1)}\cdots\widehat{m}_{i_q}^{(q)}$$
 if $i_1+\ldots+i_q=0$, and 0 else.

Degree bounds

Conjecture (Sturmfels-Sullivant)

Ideal of $Model_{p,G}$ generated in degree $\leq |G|$ for all p.

proved by S-S for $G=C_2$ proved set-theoretically by Michalek for $G=C_2\times C_2$ (3-Kimura model)

Infinite-dimensional approach

space with coordinates $x(i_1,i_2,\ldots)$ only finitely many i_j non-zero and $i_1+i_2+\ldots=0$ contains $\mathrm{Model}_{\infty,G}$ large monoid of symmetries

Very near future

compute a finite equivariant Gröbner basis for $Model_{\infty,G}$ for $G = C_3, C_2 \times C_2, C_4, \dots$

Group-based models

Prob
$$(i_1, ..., i_p) = \sum_j M_{i_1, j}^{(1)} \cdots M_{i_p, j}^{(p)}$$

 $\begin{array}{l} \text{now } i_1, \dots, i_p, j \in G \text{ group} \\ \text{impose } M_{i,j}^{(q)} = m_{i-j}^{(q)} \end{array}$

Sturmfels-Sullivant

Fourier transform:

$$\widehat{\text{Prob}}(i_1,\ldots,i_p) = \widehat{m}_{i_1}^{(1)}\cdots\widehat{m}_{i_q}^{(q)}$$
 if $i_1+\ldots+i_q=0$, and 0 else.

Degree bounds

Conjecture (Sturmfels-Sullivant)

Ideal of Model_{p,G} generated in degree $\leq |G|$ for all p.

proved by S-S for $G = C_2$ proved set-theoretically by Michalek for $G = C_2 \times C_2$ (3-Kimura model)

Infinite-dimensional approach

space with coordinates $x(i_1,i_2,\ldots)$ only finitely many i_j non-zero and $i_1+i_2+\ldots=0$ contains $\mathrm{Model}_{\infty,G}$ large monoid of symmetries

Very near future

compute a finite equivariant Gröbner basis for $Model_{\infty,G}$ for $G = C_3, C_2 \times C_2, C_4, \dots$

Thank you!

Questions?